
1/28

Online Scheduling of Moldable Task Graphs
under Common Speedup Models (ICPP 2022)

Anne Benoit1 Lucas Perotin (speaker)1 Yves Robert1,2

Hongyang Sun3

1École Normale Supérieure de Lyon, France

2University of Tennessee Knoxville, USA

3University of Kansas, USA

December 13, 2022

2/28

Introduction

I Offline Scheduling vs. Online Scheduling.
- Offline: All tasks are known in advance,

Goal: Find approximation ratios on polynomial algorithms.
- Online: Tasks released on the fly,

Goal: Derive competitive ratios against an optimal offline
scheduler.

I Independent Tasks vs. Task Graphs.
- Independent tasks: Tasks released and discovered on the fly,
- Task graphs: Graph released at the start of execution,

Tasks discovered when all predecessors are completed.

⇒ In this work, we focus on online task graphs.

3/28

Example

A

B

C

D

E

F

I At first, only task A is known,
I Other tasks are not available yet.

=⇒ The scheduler doesn’t know their existence.

4/28

Example

A

B

C

D

E

F

I When task A is done, the scheduler discovers tasks B and C.

5/28

Example

A

B

C

D

E

F

I When task B is done, task D is not discovered yet because
task C is not finished.

6/28

Example

A

B

C

D

E

F

I When task C is done as well, task D becomes known and can
start.

7/28

Example

A

B

C

D

E

F

I Finally after completion of task D, tasks E and F are
discovered.

8/28

Example

A

B

C

D

E

F

I Finally after completion of task D, tasks E and F are
discovered and can be processed as well.

9/28

Example

A

B

C

D

E

F

I Finally after completion of task D, tasks E and F are
discovered and can be processed as well.

10/28

Outline

Introduction

Model

Algorithm

Analysis

Lower bounds

Conclusion

11/28

Parallel task models

In the scheduling literature:
I Rigid tasks: Processor allocation is fixed.
I Moldable tasks: Processor allocation is decided by the system but

cannot be changed.
I Malleable tasks: Processor allocation can be dynamically changed.

We focus on moldable tasks, because:
I They can easily adapt to the amount of available processors

(contrarily to rigid tasks),
I They are easy to design/implement (contrarily to malleable tasks),
I Many computational kernels in scientific libraries are provided as

moldable tasks.

12/28

Scheduling model

I Graph of n moldable tasks with precedence constraints. Each
task is released when all predecessors are completed,

I P processors to process the tasks,
I Each task j ’s execution time tj(pj) depends on the number of

processors allocated to it and is known when the task is
released,

I Area is aj(pj) = pj × tj(pj).

13/28

Speedup models

I Roofline model: tj(pj) = wj
min(pj ,p̄j) , for some 1 ≤ p̄j ≤ P.

I Communication model: tj(pj) = wj
pj

+ (pj − 1)cj ,
where cj is the communication overhead.

I Amdahl’s model: tj(pj) = wj
(1−γj

pj
+ γj

)
,

where γj is the inherently sequential fraction.
I General model: tj(pj) = wj (1−γj)

min(pj ,p̄j) + wjγj + (pj − 1)cj ,
a combination of the three first models.

I Arbitrary model: tj(pj) is an arbitrary function of pj .

14/28

Scheduling objective

Scheduling objective:
Find a moldable schedule, i.e., processor allocation pj and starting
time sj for each task j which
I minimizes makespan: T = maxj(sj + tj(pj)),
I subject to processor constraint: ∑j active at time t pj ≤ P,∀t,
I subject to precedence constraint: j1 → j2 =⇒ sj2 ≥ sj1 + tj1 .

Competitive ratio:
An online algorithm is said to be r -competitive if its makespan T
satisfies T

Topt
≤ r for any task graph, where Topt denotes the best

offline makespan achievable for the instance.

15/28

Main results

I New online algorithms for several common speedup models,
with almost tight bounds on competitive ratios.

Model Roofline Comm. Amdahl General
Upper bound 2.62 3.61 4.74 5.72
Lower bound 2.61 3.51 4.73 5.25

I Negative result for the arbitrary speedup model. Any
deterministic online algorithm is at least Ω(ln(D))-competitive
where D is the length of the longest chain of the graph.

16/28

Outline

Introduction

Model

Algorithm

Analysis

Lower bounds

Conclusion

17/28

Preliminaries

Definitions: for a given processor allocation p = (p1, p2, · · ·, pn)T

I Total task area: A(p) =
∑n

j=1 pj · tj(pj)
I Critical-Path: C(p)=maxf

∑
j∈f tj(pj) over all paths f in the graph

Lower bound (on makespan): Lmin = max
(Amin

P ,Cmin
)

Proposition
The optimal makespan satisfies

Topt ≥ Lmin

17/28

Preliminaries

Definitions: for a given processor allocation p = (p1, p2, · · ·, pn)T

I Total task area: A(p) =
∑n

j=1 pj · tj(pj)
I Critical-Path: C(p)=maxf

∑
j∈f tj(pj) over all paths f in the graph

Lower bound (on makespan): Lmin = max
(Amin

P ,Cmin
)

Proposition
The optimal makespan satisfies

Topt ≥ Lmin

18/28

Allocation procedure

For a given µ:
I Step (1): Initial allocation

Find an allocation pj ∈ [1,P] from the following optimization
problem:

min
p

αp = aj(p)
amin

j

s.t. βp = tj(p)
tmin
j
≤ 1− 2µ
µ(1− µ)

I Step (2): Adjusted allocation 1

If p′j > dµPe then pj ← dµPe else pj ← p′j
⇒ Minimize the area up to a time constraint.
⇒ The allocation procedure doesn’t depend on the shape of the graph.
⇒ The best choice of µ depends on the speedup model.

1[Lepère et Al. 2OO1]

18/28

Allocation procedure

For a given µ:
I Step (1): Initial allocation

Find an allocation pj ∈ [1,P] from the following optimization
problem:

min
p

αp = aj(p)
amin

j

s.t. βp = tj(p)
tmin
j
≤ 1− 2µ
µ(1− µ)

I Step (2): Adjusted allocation 1

If p′j > dµPe then pj ← dµPe else pj ← p′j

⇒ Minimize the area up to a time constraint.
⇒ The allocation procedure doesn’t depend on the shape of the graph.
⇒ The best choice of µ depends on the speedup model.

1[Lepère et Al. 2OO1]

18/28

Allocation procedure

For a given µ:
I Step (1): Initial allocation

Find an allocation pj ∈ [1,P] from the following optimization
problem:

min
p

αp = aj(p)
amin

j

s.t. βp = tj(p)
tmin
j
≤ 1− 2µ
µ(1− µ)

I Step (2): Adjusted allocation 1

If p′j > dµPe then pj ← dµPe else pj ← p′j
⇒ Minimize the area up to a time constraint.
⇒ The allocation procedure doesn’t depend on the shape of the graph.
⇒ The best choice of µ depends on the speedup model.

1[Lepère et Al. 2OO1]

19/28

Scheduling algorithm and results

For a fixed processor allocation:
I List Scheduling:

- Whenever a task is released, try to schedule it if enough
processors are available

- If not, store it in a list of available tasks.
- Whenever an existing task completes, scan this list and

schedule available tasks until no task fits (or until the list is
empty).

I Results: They can be summarized in the following table:

Model Roofline Comm. Amdahl General
Choice of µ 0.382 0.324 0.271 0.211

Upper bound 2.62 3.61 4.74 5.72

19/28

Scheduling algorithm and results

For a fixed processor allocation:
I List Scheduling:

- Whenever a task is released, try to schedule it if enough
processors are available

- If not, store it in a list of available tasks.
- Whenever an existing task completes, scan this list and

schedule available tasks until no task fits (or until the list is
empty).

I Results: They can be summarized in the following table:

Model Roofline Comm. Amdahl General
Choice of µ 0.382 0.324 0.271 0.211

Upper bound 2.62 3.61 4.74 5.72

20/28

Outline

Introduction

Model

Algorithm

Analysis

Lower bounds

Conclusion

21/28

Analytical tools

Definitions: The processing time [0,T] is subdivided in three sets:

I I1: Less than µP processors are used.
=⇒ No tasks have been reduced in I1,
=⇒ No tasks are ready in I1.

I I2:

Excludes I1, for all i at most (1− µ)P processors are used.
=⇒ No tasks are ready in I2,
=⇒ At least a fraction µ of a processor is used in I2

.
I I3:

[0,T] \(I1 ∪ I2).
=⇒ At least a fraction 1− µ of a processor is used in I3.

T = |I1|+ |I2|+ |I3|

21/28

Analytical tools

Definitions: The processing time [0,T] is subdivided in three sets:

I I1: Less than µP processors are used.
=⇒ No tasks have been reduced in I1,
=⇒ No tasks are ready in I1.

I I2: Excludes I1, for all i at most (1− µ)P processors are used.
=⇒ No tasks are ready in I2,
=⇒ At least a fraction µ of a processor is used in I2.

I I3:

[0,T] \(I1 ∪ I2).
=⇒ At least a fraction 1− µ of a processor is used in I3.

T = |I1|+ |I2|+ |I3|

21/28

Analytical tools

Definitions: The processing time [0,T] is subdivided in three sets:

I I1: Less than µP processors are used.
=⇒ No tasks have been reduced in I1,
=⇒ No tasks are ready in I1.

I I2: Excludes I1, for all i at most (1− µ)P processors are used.
=⇒ No tasks are ready in I2,
=⇒ At least a fraction µ of a processor is used in I2.

I I3: [0,T] \(I1 ∪ I2).
=⇒ At least a fraction 1− µ of a processor is used in I3.

T = |I1|+ |I2|+ |I3|

21/28

Analytical tools

Definitions: The processing time [0,T] is subdivided in three sets:

I I1: Less than µP processors are used.
=⇒ No tasks have been reduced in I1,
=⇒ No tasks are ready in I1.

I I2: Excludes I1, for all i at most (1− µ)P processors are used.
=⇒ No tasks are ready in I2,
=⇒ At least a fraction µ of a processor is used in I2.

I I3: [0,T] \(I1 ∪ I2).
=⇒ At least a fraction 1− µ of a processor is used in I3.

T = |I1|+ |I2|+ |I3|

22/28

Combining two bounds

I Critical-Path Bound: Given β = maxj(tj(pj)/tmin
j)

- There exists a path filling I1 ∪ I2,
- No tasks were reduced in I1, thus tj ≤ βtmin

j ,
- Tasks are reduced to dµPe or verify tj ≤ βtmin

j . As β ≤ 1
µ ,

=⇒ |I1|
β + µ|I2| ≤ Cmin ≤ Topt (1)

I Area Bound:Given α = maxj(aj(pj)/amin)
- At least a fraction µ of a processor is used in I2,
- At least a fraction (1− µ) of a processor is used in I3,
- ∀i ,wi ≤ w ′.

=⇒ µ|I2|+ (1− µ)|I3| ≤ αAmin
P ≤ αTopt (2)

Proposition
Combining (1) and (2) with T = |I1|+ |I2|+ |I3|, and given
β ≤ 1−2µ

µ(1−µ) , we have:
T ≤ µα + 1− 2µ

µ(1− µ) × Topt.

22/28

Combining two bounds

I Critical-Path Bound: Given β = maxj(tj(pj)/tmin
j)

- There exists a path filling I1 ∪ I2,
- No tasks were reduced in I1, thus tj ≤ βtmin

j ,
- Tasks are reduced to dµPe or verify tj ≤ βtmin

j . As β ≤ 1
µ ,

=⇒ |I1|
β + µ|I2| ≤ Cmin ≤ Topt (1)

I Area Bound:Given α = maxj(aj(pj)/amin)
- At least a fraction µ of a processor is used in I2,
- At least a fraction (1− µ) of a processor is used in I3,
- ∀i ,wi ≤ w ′.

=⇒ µ|I2|+ (1− µ)|I3| ≤ αAmin
P ≤ αTopt (2)

Proposition
Combining (1) and (2) with T = |I1|+ |I2|+ |I3|, and given
β ≤ 1−2µ

µ(1−µ) , we have:
T ≤ µα + 1− 2µ

µ(1− µ) × Topt.

22/28

Combining two bounds

I Critical-Path Bound: Given β = maxj(tj(pj)/tmin
j)

- There exists a path filling I1 ∪ I2,
- No tasks were reduced in I1, thus tj ≤ βtmin

j ,
- Tasks are reduced to dµPe or verify tj ≤ βtmin

j . As β ≤ 1
µ ,

=⇒ |I1|
β + µ|I2| ≤ Cmin ≤ Topt (1)

I Area Bound:Given α = maxj(aj(pj)/amin)
- At least a fraction µ of a processor is used in I2,
- At least a fraction (1− µ) of a processor is used in I3,
- ∀i ,wi ≤ w ′.

=⇒ µ|I2|+ (1− µ)|I3| ≤ αAmin
P ≤ αTopt (2)

Proposition
Combining (1) and (2) with T = |I1|+ |I2|+ |I3|, and given
β ≤ 1−2µ

µ(1−µ) , we have:
T ≤ µα + 1− 2µ

µ(1− µ) × Topt.

23/28

Obtaining final results

Proposition
Combining (1) and (2) with T = |I1|+ |I2|+ |I3|, and given
β ≤ 1−2µ

µ(1−µ) , we have:
T ≤ µα + 1− 2µ

µ(1− µ) × Topt.

I For each speedup model, find a good upperbound on α as a
function of µ.

I Find the µ minimizing the ratio.

24/28

Outline

Introduction

Model

Algorithm

Analysis

Lower bounds

Conclusion

25/28

Lower bound for common speedup models

Tasks parameters are chosen so that:
I It is barely impossible to process a

full layer in parallel;
I Area of the tasks in B is as high as

possible, other areas are negligibles;
I C is as long as possible.
⇒ Processor utilization is as bad as possible
⇒ Area and Critical Path are as bad as
possibles.
A possible result of our heurisitic is shown
in (a)

, and the optimal is shown in (b).

25/28

Lower bound for common speedup models

Tasks parameters are chosen so that:
I It is barely impossible to process a

full layer in parallel;
I Area of the tasks in B is as high as

possible, other areas are negligibles;
I C is as long as possible.
⇒ Processor utilization is as bad as possible
⇒ Area and Critical Path are as bad as
possibles.
A possible result of our heurisitic is shown
in (a), and the optimal is shown in (b).

26/28

Instance and trick for negative result

I K = 2l groups of indistinguishable tasks,
I With 2i−1 processors for tasks in group i , the

processing time is 1,

I One rep. of all task of group i is longer than 1
l+i ,

I Any deterministic algorithm could produce a
schedule of length at least Ω(ln(K)).

26/28

Instance and trick for negative result

I K = 2l groups of indistinguishable tasks,
I With 2i−1 processors for tasks in group i , the

processing time is 1,

I One rep. of all task of group i is longer than 1
l+i ,

I Any deterministic algorithm could produce a
schedule of length at least Ω(ln(K)).

26/28

Instance and trick for negative result

I K = 2l groups of indistinguishable tasks,
I With 2i−1 processors for tasks in group i , the

processing time is 1,
I One rep. of all task of group i is longer than 1

l+i ,
I Any deterministic algorithm could produce a

schedule of length at least Ω(ln(K)).

27/28

Outline

Introduction

Model

Algorithm

Analysis

Lower bounds

Conclusion

28/28

Conclusion

What does this paper bring:
I A new algorithm for online scheduling of moldable task graphs,
I Almost tight competitive ratios for several common speedup

models.

Current work:
I Improve the allocation analysis,
I Close gap between upper and lower bounds for competitive

ratio,
I Build a lower bound for algorithms with two-phases approach

(allocation independent from schedule)
I Experimental evaluation.

	Introduction
	Model
	Algorithm
	Analysis
	Lower bounds
	Conclusion

