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Dynamic power management (DPM)

Machine with multiple sleep states:

server.png S-states.png

Deeper sleep → higher wake-up cost

Input: sequence of idle periods

. . .
20s 5min 10s ??

Our task: choose sleep states during each idle period

• duration is not known in advance!
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Dynamic power management: previous works

Algorithms:
• Irani, Shukla, and Gupta (2003)
• Lotker, Patt-Shamir, and Rawitz (2012)

Predicting lengths of the idle periods:
• Benini, Bogliolo, and Micheli (2000)
• Chung, Benini, Bogliolo, Lu, and Micheli (2002)

Heuristics:
• Helmbold, Long, Sconyers, and Sherrod (2000)
• Lim, Sharma, Tak, and Das (2011)
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Learning-augmented algorithms

• introduced by Lykouris and Vassilvitskii (2018)

Algorithms receive predictions

• e.g. learned from past data

Three desired properties:

Consistency
Close-to-optimal performance with close-to-accurate
predictions.

Robustness
Strong guarantees also with incorrect predictions.

Smoothness
Performance deteriorates smoothly with the prediction error.
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Predictions for DPM

At the beginning of idle period 𝑖:
• prediction 𝜏𝑖 of the length ℓ𝑖 of the idle period 𝑖

Prediction error in 𝑖th idle period

𝜂𝑖 = 𝛼 ⋅ |𝜏𝑖 − ℓ𝑖|,

• 𝛼 = power consumption of the active state
Prediction error during the whole instance

𝜂 =
𝑛

∑
𝑖=1
𝜂𝑖
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Our results

Algorithm for DPM with a theoretical guarantee
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Our algorithm

New bounds for ski rental

• performance as a function of prediction error
• optimal trade-off: consistency vs. error dependence

Experimental evaluation
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Outline of the technical part

1. ski rental: optimal consistency/error dependence trade-off
2. reduction from DPM to ski rental
3. finding the best trade-off online
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Ski rental

ski_rental2.jpg

Fundamental problem:

• see Phillips, Westbrook (1999) and Irani, Karlin (1996)
• implicit in many problems in Online Optimization
• appears in Online Learning with switching costs
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Ski rental

During a ski season of unknown length:
• each day we decide whether to

• rent the skis for one more day paying 𝛼, or
• buy the skis paying cost 𝛽

Corresponds to the following DPM:
• single idle period (of unknown length) and two states:

• active state: power consumption 𝛼, wake-up cost 0
• sleep state: power consumption 0, wake-up cost 𝛽

• cost if switching to the sleep state at time 𝑦:
α

y

∫ y

0
αdt = αy +β for wake-up
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Ski rental: previous work

Competitive ratio

max
cost(𝐴𝐿𝐺)
cost(𝑂𝑃𝑇)

Without predictions:

• 2-competitive deterministic (folklore)
• 𝑒
𝑒−1-competitive randomized (Karlin et al. ’90)

Learning augmented:

• Purohit, Svitkina, Kumar (2018)
• deterministic algorithm with a trade-off parameter 𝜆 ∈ (0, 1)
• correct prediction: (1 + 𝜆)-competitive (consistency)
• wrong prediction: (1 + 1

𝜆 )-competitive (robustness)
• randomized algorithm with an improved trade-off
• Gollapudi, Panigrahi ’20, Wei, Zhang ’20, Angelopoulos et al. ’20
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Trade-off between consistency and error dependence

Performance as a function of prediction error 𝜂

• algorithm is (𝜌, 𝜇)-competitive, if
cost(𝐴𝐿𝐺) ≤ 𝜌 ⋅ cost(𝑂𝑃𝑇) + 𝜇 ⋅ 𝜂

Examples:

• algorithm which follows the prediction blindly:
𝜌 = 1, 𝜇 = 1

• standard online algorithms which do not use predictions:
𝜌 = 2, 𝜇 = 0 deterministic; 𝜌 = 𝑒

𝑒−1 , 𝜇 = 0 randomized

• (𝜌, 𝜇)-competitiveness of Purohit et al. (2018)
• either 𝜇 ≥ 1,
• or 𝜇 = 0 and 𝜌 ≥ 𝑒

𝑒−1
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Our new bound for ski rental

Theorem (optimal trade-off between 𝜌 and 𝜇):

• there is a (𝜌, 𝜇)-competitive algorithm for ski rental, where

𝜌 ∈ [1, 𝑒
𝑒 − 1

] and 𝜇 = 𝜇(𝜌) = max {
1 − 𝜌𝑒−1𝑒
ln 2

, 𝜌(1 − 𝑇)𝑒−𝑇}

• 𝑇 ∈ [0, 1] is the solution to 𝑇2𝑒−𝑇 = 1 − 1
𝜌

1.0 1.1 1.2 1.3 1.4 1.5 1.6
0.0

0.2

0.4

0.6

0.8

1.0

(
)
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Our algorithm for ski rental

Randomized algorithm
• determined by a CDF 𝐹 of buying until a given time
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• sample 𝑝 ∼ 𝑈([0, 1]), buy at the first time 𝑡 s.t. 𝐹(𝑡) ≥ 𝑝.

Necessary condition for (𝜌, 𝜇)-competitiveness

• for any prediction 𝜏 and time 𝑡:
renting cost + buying cost ≤ 𝜌 ⋅ min{1, 𝑡} + 𝜇 ⋅ |𝑡 − 𝜏|

• obstacle: |𝑡 − 𝜏| is not monotone
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Ski rental → multistate DPM

Multi-state DPM

• power consumptions 𝛼0 > 𝛼1 > ⋯ > 𝛼𝑘 = 0
• wake-up costs 0 = 𝛽0 < 𝛽1 < ⋯ < 𝛽𝑘

Construct 𝑘 instances of ski rental:

• 𝑗 = 1, … , 𝑘: rental cost 𝛼𝑗−1 − 𝛼𝑗, buying cost 𝛽𝑗 − 𝛽𝑗−1
• switch from state 𝑗 − 1 to 𝑗 using the ski rental algorithm

What if switch 𝑗 → 𝑗 + 1 happens before 𝑗 − 1 → 𝑗?

• we need to make ski rental algorithm monotone
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Case 3, 𝜏 > 1
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• we need to make ski rental algorithm monotone
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Ski rental → multistate DPM
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What ρ and μ are the best?

What we have so far:

• given a parameter 𝜌 ∈ [1, 𝑒
𝑒−1 ], there is 𝐴𝐿𝐺 for DPM with

cost(𝐴𝐿𝐺) ≤ 𝜌 ⋅ cost(𝑂𝑃𝑇) + 𝜇(𝜌) ⋅ 𝜂
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No good choice of 𝜌 and 𝜇 a priori

• 𝜇(𝜌) > 0: 𝐴𝐿𝐺 has unbounded cost with large 𝜂
• 𝜇(𝜌) = 0: 𝐴𝐿𝐺 ignores predictions completely
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What ρ and μ are the best?

If we knew the prediction error in advance

• for an instance with a total error 𝜂:

𝜌∗ = argmin
𝜌
{𝜌 ⋅ cost(𝑂𝑃𝑇) + 𝜇(𝜌) ⋅ 𝜂}

We choose 𝜌 using Online Learning

cost(𝐴𝐿𝐺) ≤ (1 + 𝜖)(𝜌∗ ⋅ cost(𝑂𝑃𝑇) + 𝜇(𝜌∗) ⋅ 𝜂) + 𝑂(𝛽𝜖 log
1
𝜖 )
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Experimental results
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Thank you for your attention!
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