
Learning-Augmented
Dynamic Power Management with Multiple States
via New Ski Rental Bounds

A. Antoniadis, C. Coester, M. Eliáš, A. Polak, B. Simon
December 13, 2022

NeurIPS 2021

slides from M. Eliáš

Dynamic power management (DPM)

Machine with multiple sleep states:

server.png S-states.png

Deeper sleep → higher wake-up cost

Input: sequence of idle periods

. . .
20s 5min 10s ??

Our task: choose sleep states during each idle period

• duration is not known in advance!

1/16

Dynamic power management (DPM)

Machine with multiple sleep states:

server.png S-states.png

Deeper sleep → higher wake-up cost

Input: sequence of idle periods

. . .
20s 5min 10s ??

Our task: choose sleep states during each idle period

• duration is not known in advance!

1/16

Dynamic power management (DPM)

Machine with multiple sleep states:

server.png S-states.png

Deeper sleep → higher wake-up cost

Input: sequence of idle periods

. . .
20s 5min 10s ??

Our task: choose sleep states during each idle period

• duration is not known in advance!

1/16

Dynamic power management (DPM)

Machine with multiple sleep states:

server.png S-states.png

Deeper sleep → higher wake-up cost

Input: sequence of idle periods

. . .
20s 5min 10s ??

Our task: choose sleep states during each idle period

• duration is not known in advance! 1/16

Dynamic power management: previous works

Algorithms:
• Irani, Shukla, and Gupta (2003)
• Lotker, Patt-Shamir, and Rawitz (2012)

Predicting lengths of the idle periods:
• Benini, Bogliolo, and Micheli (2000)
• Chung, Benini, Bogliolo, Lu, and Micheli (2002)

Heuristics:
• Helmbold, Long, Sconyers, and Sherrod (2000)
• Lim, Sharma, Tak, and Das (2011)

2/16

Learning-augmented algorithms

• introduced by Lykouris and Vassilvitskii (2018)

Algorithms receive predictions

• e.g. learned from past data

Three desired properties:

Consistency
Close-to-optimal performance with close-to-accurate
predictions.

Robustness
Strong guarantees also with incorrect predictions.

Smoothness
Performance deteriorates smoothly with the prediction error.

3/16

Learning-augmented algorithms

• introduced by Lykouris and Vassilvitskii (2018)

Algorithms receive predictions

• e.g. learned from past data

Three desired properties:

Consistency
Close-to-optimal performance with close-to-accurate
predictions.

Robustness
Strong guarantees also with incorrect predictions.

Smoothness
Performance deteriorates smoothly with the prediction error.

3/16

Learning-augmented algorithms

• introduced by Lykouris and Vassilvitskii (2018)

Algorithms receive predictions

• e.g. learned from past data

Three desired properties:

Consistency
Close-to-optimal performance with close-to-accurate
predictions.

Robustness
Strong guarantees also with incorrect predictions.

Smoothness
Performance deteriorates smoothly with the prediction error.

3/16

Learning-augmented algorithms

• introduced by Lykouris and Vassilvitskii (2018)

Algorithms receive predictions

• e.g. learned from past data

Three desired properties:

Consistency
Close-to-optimal performance with close-to-accurate
predictions.

Robustness
Strong guarantees also with incorrect predictions.

Smoothness
Performance deteriorates smoothly with the prediction error.

3/16

Predictions for DPM

At the beginning of idle period 𝑖:
• prediction 𝜏𝑖 of the length ℓ𝑖 of the idle period 𝑖

Prediction error in 𝑖th idle period

𝜂𝑖 = 𝛼 ⋅ |𝜏𝑖 − ℓ𝑖|,

• 𝛼 = power consumption of the active state
Prediction error during the whole instance

𝜂 =
𝑛

∑
𝑖=1
𝜂𝑖

4/16

Predictions for DPM

At the beginning of idle period 𝑖:
• prediction 𝜏𝑖 of the length ℓ𝑖 of the idle period 𝑖

Prediction error in 𝑖th idle period

𝜂𝑖 = 𝛼 ⋅ |𝜏𝑖 − ℓ𝑖|,

• 𝛼 = power consumption of the active state

Prediction error during the whole instance

𝜂 =
𝑛

∑
𝑖=1
𝜂𝑖

4/16

Predictions for DPM

At the beginning of idle period 𝑖:
• prediction 𝜏𝑖 of the length ℓ𝑖 of the idle period 𝑖

Prediction error in 𝑖th idle period

𝜂𝑖 = 𝛼 ⋅ |𝜏𝑖 − ℓ𝑖|,

• 𝛼 = power consumption of the active state
Prediction error during the whole instance

𝜂 =
𝑛

∑
𝑖=1
𝜂𝑖

4/16

Our results

Algorithm for DPM with a theoretical guarantee

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
/ OPT

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Co
m

pe
tit

iv
e

ra
tio

Online algorithm
Blindly follow predictions
Our algorithm

New bounds for ski rental

• performance as a function of prediction error
• optimal trade-off: consistency vs. error dependence

Experimental evaluation

5/16

Our results

Algorithm for DPM with a theoretical guarantee

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
/ OPT

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Co
m

pe
tit

iv
e

ra
tio

Online algorithm
Blindly follow predictions
Our algorithm

New bounds for ski rental

• performance as a function of prediction error
• optimal trade-off: consistency vs. error dependence

Experimental evaluation

5/16

Our results

Algorithm for DPM with a theoretical guarantee

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
/ OPT

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Co
m

pe
tit

iv
e

ra
tio

Online algorithm
Blindly follow predictions
Our algorithm

New bounds for ski rental

• performance as a function of prediction error
• optimal trade-off: consistency vs. error dependence

Experimental evaluation
5/16

Outline of the technical part

1. ski rental: optimal consistency/error dependence trade-off
2. reduction from DPM to ski rental
3. finding the best trade-off online

6/16

Ski rental

ski_rental2.jpg

Fundamental problem:

• see Phillips, Westbrook (1999) and Irani, Karlin (1996)
• implicit in many problems in Online Optimization
• appears in Online Learning with switching costs

7/16

Ski rental

During a ski season of unknown length:
• each day we decide whether to

• rent the skis for one more day paying 𝛼, or
• buy the skis paying cost 𝛽

Corresponds to the following DPM:
• single idle period (of unknown length) and two states:

• active state: power consumption 𝛼, wake-up cost 0
• sleep state: power consumption 0, wake-up cost 𝛽

• cost if switching to the sleep state at time 𝑦:
α

y

∫ y

0
αdt = αy +β for wake-up

8/16

Ski rental

During a ski season of unknown length:
• each day we decide whether to

• rent the skis for one more day paying 𝛼, or
• buy the skis paying cost 𝛽

Corresponds to the following DPM:
• single idle period (of unknown length) and two states:

• active state: power consumption 𝛼, wake-up cost 0
• sleep state: power consumption 0, wake-up cost 𝛽

• cost if switching to the sleep state at time 𝑦:
α

y

∫ y

0
αdt = αy +β for wake-up

8/16

Ski rental

During a ski season of unknown length:
• each day we decide whether to

• rent the skis for one more day paying 𝛼, or
• buy the skis paying cost 𝛽

Corresponds to the following DPM:
• single idle period (of unknown length) and two states:

• active state: power consumption 𝛼, wake-up cost 0
• sleep state: power consumption 0, wake-up cost 𝛽

• cost if switching to the sleep state at time 𝑦:
α

y

∫ y

0
αdt = αy +β for wake-up

8/16

Ski rental: previous work

Competitive ratio

max
cost(𝐴𝐿𝐺)
cost(𝑂𝑃𝑇)

Without predictions:

• 2-competitive deterministic (folklore)
• 𝑒
𝑒−1-competitive randomized (Karlin et al. ’90)

Learning augmented:

• Purohit, Svitkina, Kumar (2018)
• deterministic algorithm with a trade-off parameter 𝜆 ∈ (0, 1)
• correct prediction: (1 + 𝜆)-competitive (consistency)
• wrong prediction: (1 + 1

𝜆)-competitive (robustness)
• randomized algorithm with an improved trade-off
• Gollapudi, Panigrahi ’20, Wei, Zhang ’20, Angelopoulos et al. ’20

9/16

Ski rental: previous work

Competitive ratio

max
cost(𝐴𝐿𝐺)
cost(𝑂𝑃𝑇)

Without predictions:

• 2-competitive deterministic (folklore)
• 𝑒
𝑒−1-competitive randomized (Karlin et al. ’90)

Learning augmented:

• Purohit, Svitkina, Kumar (2018)
• deterministic algorithm with a trade-off parameter 𝜆 ∈ (0, 1)
• correct prediction: (1 + 𝜆)-competitive (consistency)
• wrong prediction: (1 + 1

𝜆)-competitive (robustness)
• randomized algorithm with an improved trade-off
• Gollapudi, Panigrahi ’20, Wei, Zhang ’20, Angelopoulos et al. ’20

9/16

Ski rental: previous work

Competitive ratio

max
cost(𝐴𝐿𝐺)
cost(𝑂𝑃𝑇)

Without predictions:

• 2-competitive deterministic (folklore)
• 𝑒
𝑒−1-competitive randomized (Karlin et al. ’90)

Learning augmented:

• Purohit, Svitkina, Kumar (2018)
• deterministic algorithm with a trade-off parameter 𝜆 ∈ (0, 1)
• correct prediction: (1 + 𝜆)-competitive (consistency)
• wrong prediction: (1 + 1

𝜆)-competitive (robustness)
• randomized algorithm with an improved trade-off
• Gollapudi, Panigrahi ’20, Wei, Zhang ’20, Angelopoulos et al. ’20 9/16

Trade-off between consistency and error dependence

Performance as a function of prediction error 𝜂

• algorithm is (𝜌, 𝜇)-competitive, if
cost(𝐴𝐿𝐺) ≤ 𝜌 ⋅ cost(𝑂𝑃𝑇) + 𝜇 ⋅ 𝜂

Examples:

• algorithm which follows the prediction blindly:
𝜌 = 1, 𝜇 = 1

• standard online algorithms which do not use predictions:
𝜌 = 2, 𝜇 = 0 deterministic; 𝜌 = 𝑒

𝑒−1 , 𝜇 = 0 randomized

• (𝜌, 𝜇)-competitiveness of Purohit et al. (2018)
• either 𝜇 ≥ 1,
• or 𝜇 = 0 and 𝜌 ≥ 𝑒

𝑒−1

10/16

Trade-off between consistency and error dependence

Performance as a function of prediction error 𝜂

• algorithm is (𝜌, 𝜇)-competitive, if
cost(𝐴𝐿𝐺) ≤ 𝜌 ⋅ cost(𝑂𝑃𝑇) + 𝜇 ⋅ 𝜂

Examples:

• algorithm which follows the prediction blindly:
𝜌 = 1, 𝜇 = 1

• standard online algorithms which do not use predictions:
𝜌 = 2, 𝜇 = 0 deterministic; 𝜌 = 𝑒

𝑒−1 , 𝜇 = 0 randomized

• (𝜌, 𝜇)-competitiveness of Purohit et al. (2018)
• either 𝜇 ≥ 1,
• or 𝜇 = 0 and 𝜌 ≥ 𝑒

𝑒−1

10/16

Trade-off between consistency and error dependence

Performance as a function of prediction error 𝜂

• algorithm is (𝜌, 𝜇)-competitive, if
cost(𝐴𝐿𝐺) ≤ 𝜌 ⋅ cost(𝑂𝑃𝑇) + 𝜇 ⋅ 𝜂

Examples:

• algorithm which follows the prediction blindly:
𝜌 = 1, 𝜇 = 1

• standard online algorithms which do not use predictions:
𝜌 = 2, 𝜇 = 0 deterministic; 𝜌 = 𝑒

𝑒−1 , 𝜇 = 0 randomized

• (𝜌, 𝜇)-competitiveness of Purohit et al. (2018)
• either 𝜇 ≥ 1,
• or 𝜇 = 0 and 𝜌 ≥ 𝑒

𝑒−1

10/16

Trade-off between consistency and error dependence

Performance as a function of prediction error 𝜂

• algorithm is (𝜌, 𝜇)-competitive, if
cost(𝐴𝐿𝐺) ≤ 𝜌 ⋅ cost(𝑂𝑃𝑇) + 𝜇 ⋅ 𝜂

Examples:

• algorithm which follows the prediction blindly:
𝜌 = 1, 𝜇 = 1

• standard online algorithms which do not use predictions:
𝜌 = 2, 𝜇 = 0 deterministic; 𝜌 = 𝑒

𝑒−1 , 𝜇 = 0 randomized

• (𝜌, 𝜇)-competitiveness of Purohit et al. (2018)
• either 𝜇 ≥ 1,
• or 𝜇 = 0 and 𝜌 ≥ 𝑒

𝑒−1

10/16

Our new bound for ski rental

Theorem (optimal trade-off between 𝜌 and 𝜇):

• there is a (𝜌, 𝜇)-competitive algorithm for ski rental, where

𝜌 ∈ [1, 𝑒
𝑒 − 1

] and 𝜇 = 𝜇(𝜌) = max {
1 − 𝜌𝑒−1𝑒
ln 2

, 𝜌(1 − 𝑇)𝑒−𝑇}

• 𝑇 ∈ [0, 1] is the solution to 𝑇2𝑒−𝑇 = 1 − 1
𝜌

1.0 1.1 1.2 1.3 1.4 1.5 1.6
0.0

0.2

0.4

0.6

0.8

1.0

(
)

11/16

Our algorithm for ski rental

Randomized algorithm
• determined by a CDF 𝐹 of buying until a given time

1.00.0 0.2 0.4 0.6 0.8 1.2 1.4
Time

0.0

0.2

0.4

0.6

0.8

1.0
Pr

ob
ab

ili
ty

th
at

th
e

al
go

rit
hm

bu
ys

be
fo

re
th

at
tim

e

• sample 𝑝 ∼ 𝑈([0, 1]), buy at the first time 𝑡 s.t. 𝐹(𝑡) ≥ 𝑝.

Necessary condition for (𝜌, 𝜇)-competitiveness

• for any prediction 𝜏 and time 𝑡:
renting cost + buying cost ≤ 𝜌 ⋅ min{1, 𝑡} + 𝜇 ⋅ |𝑡 − 𝜏|

• obstacle: |𝑡 − 𝜏| is not monotone

12/16

Our algorithm for ski rental

Randomized algorithm
• determined by a CDF 𝐹 of buying until a given time

1.00.0 0.2 0.4 0.6 0.8 1.2 1.4
Time

0.0

0.2

0.4

0.6

0.8

1.0
Pr

ob
ab

ili
ty

th
at

th
e

al
go

rit
hm

bu
ys

be
fo

re
th

at
tim

e

𝜏=0.1
𝜏=0.3
𝜏=0.5
𝜏=0.65
𝜏=0.8𝜏=0.95𝜏=1.1

𝜏=1.4
𝜏=1.7

Case 1, 𝜏 < 0.5818
Case 2, 𝜏 ∈ [0.5818, 1]
Case 3, 𝜏 > 1

• sample 𝑝 ∼ 𝑈([0, 1]), buy at the first time 𝑡 s.t. 𝐹(𝑡) ≥ 𝑝.

Necessary condition for (𝜌, 𝜇)-competitiveness

• for any prediction 𝜏 and time 𝑡:
renting cost + buying cost ≤ 𝜌 ⋅ min{1, 𝑡} + 𝜇 ⋅ |𝑡 − 𝜏|

• obstacle: |𝑡 − 𝜏| is not monotone

12/16

Our algorithm for ski rental

Randomized algorithm
• determined by a CDF 𝐹 of buying until a given time

1.00.0 0.2 0.4 0.6 0.8 1.2 1.4
Time

0.0

0.2

0.4

0.6

0.8

1.0
Pr

ob
ab

ili
ty

th
at

th
e

al
go

rit
hm

bu
ys

be
fo

re
th

at
tim

e

𝜏=0.1
𝜏=0.3
𝜏=0.5
𝜏=0.65
𝜏=0.8𝜏=0.95𝜏=1.1

𝜏=1.4
𝜏=1.7

Case 1, 𝜏 < 0.5818
Case 2, 𝜏 ∈ [0.5818, 1]
Case 3, 𝜏 > 1

• sample 𝑝 ∼ 𝑈([0, 1]), buy at the first time 𝑡 s.t. 𝐹(𝑡) ≥ 𝑝.

Necessary condition for (𝜌, 𝜇)-competitiveness

• for any prediction 𝜏 and time 𝑡:
renting cost + buying cost ≤ 𝜌 ⋅ min{1, 𝑡} + 𝜇 ⋅ |𝑡 − 𝜏|

• obstacle: |𝑡 − 𝜏| is not monotone 12/16

Ski rental → multistate DPM

Multi-state DPM

• power consumptions 𝛼0 > 𝛼1 > ⋯ > 𝛼𝑘 = 0
• wake-up costs 0 = 𝛽0 < 𝛽1 < ⋯ < 𝛽𝑘

Construct 𝑘 instances of ski rental:

• 𝑗 = 1, … , 𝑘: rental cost 𝛼𝑗−1 − 𝛼𝑗, buying cost 𝛽𝑗 − 𝛽𝑗−1
• switch from state 𝑗 − 1 to 𝑗 using the ski rental algorithm

What if switch 𝑗 → 𝑗 + 1 happens before 𝑗 − 1 → 𝑗?

• we need to make ski rental algorithm monotone

1.00.0 0.2 0.4 0.6 0.8 1.2 1.4
Time

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty
th

at
th

e
al

go
rit

hm
bu

ys
be

fo
re

th
at

tim
e

𝜏=0.1
𝜏=0.3
𝜏=0.5
𝜏=0.65
𝜏=0.8𝜏=0.95𝜏=1.1

𝜏=1.4
𝜏=1.7

Case 1, 𝜏 < 0.5818
Case 2, 𝜏 ∈ [0.5818, 1]
Case 3, 𝜏 > 1

1.00.0 0.2 0.4 0.6 0.8 1.2 1.4
Time

1-𝜇

1.0

0.0

0.2

0.4

0.8

Pr
ob

ab
ili

ty
th

at
th

e
al

go
rit

hm
bu

ys
be

fo
re

th
at

tim
e

𝜏=0.1
𝜏=0.3
𝜏=0.5
𝜏=0.65
𝜏=0.8
𝜏=0.95
𝜏=1.1

𝜏=1.4

𝜏=1.7

Case 1, 𝜏 < 0.5856
Case 2, 𝜏 ∈ [0.5856, 1]
Case 3, 𝜏 > 1

13/16

Ski rental → multistate DPM

Multi-state DPM

• power consumptions 𝛼0 > 𝛼1 > ⋯ > 𝛼𝑘 = 0
• wake-up costs 0 = 𝛽0 < 𝛽1 < ⋯ < 𝛽𝑘

Construct 𝑘 instances of ski rental:

• 𝑗 = 1, … , 𝑘: rental cost 𝛼𝑗−1 − 𝛼𝑗, buying cost 𝛽𝑗 − 𝛽𝑗−1
• switch from state 𝑗 − 1 to 𝑗 using the ski rental algorithm

What if switch 𝑗 → 𝑗 + 1 happens before 𝑗 − 1 → 𝑗?

• we need to make ski rental algorithm monotone

1.00.0 0.2 0.4 0.6 0.8 1.2 1.4
Time

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty
th

at
th

e
al

go
rit

hm
bu

ys
be

fo
re

th
at

tim
e

𝜏=0.1
𝜏=0.3
𝜏=0.5
𝜏=0.65
𝜏=0.8𝜏=0.95𝜏=1.1

𝜏=1.4
𝜏=1.7

Case 1, 𝜏 < 0.5818
Case 2, 𝜏 ∈ [0.5818, 1]
Case 3, 𝜏 > 1

1.00.0 0.2 0.4 0.6 0.8 1.2 1.4
Time

1-𝜇

1.0

0.0

0.2

0.4

0.8

Pr
ob

ab
ili

ty
th

at
th

e
al

go
rit

hm
bu

ys
be

fo
re

th
at

tim
e

𝜏=0.1
𝜏=0.3
𝜏=0.5
𝜏=0.65
𝜏=0.8
𝜏=0.95
𝜏=1.1

𝜏=1.4

𝜏=1.7

Case 1, 𝜏 < 0.5856
Case 2, 𝜏 ∈ [0.5856, 1]
Case 3, 𝜏 > 1

13/16

Ski rental → multistate DPM

Multi-state DPM

• power consumptions 𝛼0 > 𝛼1 > ⋯ > 𝛼𝑘 = 0
• wake-up costs 0 = 𝛽0 < 𝛽1 < ⋯ < 𝛽𝑘

Construct 𝑘 instances of ski rental:

• 𝑗 = 1, … , 𝑘: rental cost 𝛼𝑗−1 − 𝛼𝑗, buying cost 𝛽𝑗 − 𝛽𝑗−1
• switch from state 𝑗 − 1 to 𝑗 using the ski rental algorithm

What if switch 𝑗 → 𝑗 + 1 happens before 𝑗 − 1 → 𝑗?

• we need to make ski rental algorithm monotone

1.00.0 0.2 0.4 0.6 0.8 1.2 1.4
Time

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty
th

at
th

e
al

go
rit

hm
bu

ys
be

fo
re

th
at

tim
e

𝜏=0.1
𝜏=0.3
𝜏=0.5
𝜏=0.65
𝜏=0.8𝜏=0.95𝜏=1.1

𝜏=1.4
𝜏=1.7

Case 1, 𝜏 < 0.5818
Case 2, 𝜏 ∈ [0.5818, 1]
Case 3, 𝜏 > 1

1.00.0 0.2 0.4 0.6 0.8 1.2 1.4
Time

1-𝜇

1.0

0.0

0.2

0.4

0.8

Pr
ob

ab
ili

ty
th

at
th

e
al

go
rit

hm
bu

ys
be

fo
re

th
at

tim
e

𝜏=0.1
𝜏=0.3
𝜏=0.5
𝜏=0.65
𝜏=0.8
𝜏=0.95
𝜏=1.1

𝜏=1.4

𝜏=1.7

Case 1, 𝜏 < 0.5856
Case 2, 𝜏 ∈ [0.5856, 1]
Case 3, 𝜏 > 1

13/16

Ski rental → multistate DPM

Multi-state DPM

• power consumptions 𝛼0 > 𝛼1 > ⋯ > 𝛼𝑘 = 0
• wake-up costs 0 = 𝛽0 < 𝛽1 < ⋯ < 𝛽𝑘

Construct 𝑘 instances of ski rental:

• 𝑗 = 1, … , 𝑘: rental cost 𝛼𝑗−1 − 𝛼𝑗, buying cost 𝛽𝑗 − 𝛽𝑗−1
• switch from state 𝑗 − 1 to 𝑗 using the ski rental algorithm

What if switch 𝑗 → 𝑗 + 1 happens before 𝑗 − 1 → 𝑗?

• we need to make ski rental algorithm monotone

1.00.0 0.2 0.4 0.6 0.8 1.2 1.4
Time

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty
th

at
th

e
al

go
rit

hm
bu

ys
be

fo
re

th
at

tim
e

𝜏=0.1
𝜏=0.3
𝜏=0.5
𝜏=0.65
𝜏=0.8𝜏=0.95𝜏=1.1

𝜏=1.4
𝜏=1.7

Case 1, 𝜏 < 0.5818
Case 2, 𝜏 ∈ [0.5818, 1]
Case 3, 𝜏 > 1

1.00.0 0.2 0.4 0.6 0.8 1.2 1.4
Time

1-𝜇

1.0

0.0

0.2

0.4

0.8

Pr
ob

ab
ili

ty
th

at
th

e
al

go
rit

hm
bu

ys
be

fo
re

th
at

tim
e

𝜏=0.1
𝜏=0.3
𝜏=0.5
𝜏=0.65
𝜏=0.8
𝜏=0.95
𝜏=1.1

𝜏=1.4

𝜏=1.7

Case 1, 𝜏 < 0.5856
Case 2, 𝜏 ∈ [0.5856, 1]
Case 3, 𝜏 > 1

13/16

Ski rental → multistate DPM

Multi-state DPM

• power consumptions 𝛼0 > 𝛼1 > ⋯ > 𝛼𝑘 = 0
• wake-up costs 0 = 𝛽0 < 𝛽1 < ⋯ < 𝛽𝑘

Construct 𝑘 instances of ski rental:

• 𝑗 = 1, … , 𝑘: rental cost 𝛼𝑗−1 − 𝛼𝑗, buying cost 𝛽𝑗 − 𝛽𝑗−1
• switch from state 𝑗 − 1 to 𝑗 using the ski rental algorithm

What if switch 𝑗 → 𝑗 + 1 happens before 𝑗 − 1 → 𝑗?

• we need to make ski rental algorithm monotone

1.00.0 0.2 0.4 0.6 0.8 1.2 1.4
Time

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty
th

at
th

e
al

go
rit

hm
bu

ys
be

fo
re

th
at

tim
e

𝜏=0.1
𝜏=0.3
𝜏=0.5
𝜏=0.65
𝜏=0.8𝜏=0.95𝜏=1.1

𝜏=1.4
𝜏=1.7

Case 1, 𝜏 < 0.5818
Case 2, 𝜏 ∈ [0.5818, 1]
Case 3, 𝜏 > 1

1.00.0 0.2 0.4 0.6 0.8 1.2 1.4
Time

1-𝜇

1.0

0.0

0.2

0.4

0.8

Pr
ob

ab
ili

ty
th

at
th

e
al

go
rit

hm
bu

ys
be

fo
re

th
at

tim
e

𝜏=0.1
𝜏=0.3
𝜏=0.5
𝜏=0.65
𝜏=0.8
𝜏=0.95
𝜏=1.1

𝜏=1.4

𝜏=1.7

Case 1, 𝜏 < 0.5856
Case 2, 𝜏 ∈ [0.5856, 1]
Case 3, 𝜏 > 1

13/16

What ρ and μ are the best?

What we have so far:

• given a parameter 𝜌 ∈ [1, 𝑒
𝑒−1], there is 𝐴𝐿𝐺 for DPM with

cost(𝐴𝐿𝐺) ≤ 𝜌 ⋅ cost(𝑂𝑃𝑇) + 𝜇(𝜌) ⋅ 𝜂

1.0 1.1 1.2 1.3 1.4 1.5 1.6
0.0

0.2

0.4

0.6

0.8

1.0
(

)

No good choice of 𝜌 and 𝜇 a priori

• 𝜇(𝜌) > 0: 𝐴𝐿𝐺 has unbounded cost with large 𝜂
• 𝜇(𝜌) = 0: 𝐴𝐿𝐺 ignores predictions completely

14/16

What ρ and μ are the best?

What we have so far:

• given a parameter 𝜌 ∈ [1, 𝑒
𝑒−1], there is 𝐴𝐿𝐺 for DPM with

cost(𝐴𝐿𝐺) ≤ 𝜌 ⋅ cost(𝑂𝑃𝑇) + 𝜇(𝜌) ⋅ 𝜂

1.0 1.1 1.2 1.3 1.4 1.5 1.6
0.0

0.2

0.4

0.6

0.8

1.0
(

)

No good choice of 𝜌 and 𝜇 a priori

• 𝜇(𝜌) > 0: 𝐴𝐿𝐺 has unbounded cost with large 𝜂
• 𝜇(𝜌) = 0: 𝐴𝐿𝐺 ignores predictions completely

14/16

What ρ and μ are the best?

If we knew the prediction error in advance

• for an instance with a total error 𝜂:

𝜌∗ = argmin
𝜌
{𝜌 ⋅ cost(𝑂𝑃𝑇) + 𝜇(𝜌) ⋅ 𝜂}

We choose 𝜌 using Online Learning

cost(𝐴𝐿𝐺) ≤ (1 + 𝜖)(𝜌∗ ⋅ cost(𝑂𝑃𝑇) + 𝜇(𝜌∗) ⋅ 𝜂) + 𝑂(𝛽𝜖 log
1
𝜖)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
/ OPT

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Co
m

pe
tit

iv
e

ra
tio

Online algorithm
Blindly follow predictions
Our algorithm

15/16

What ρ and μ are the best?

If we knew the prediction error in advance

• for an instance with a total error 𝜂:

𝜌∗ = argmin
𝜌
{𝜌 ⋅ cost(𝑂𝑃𝑇) + 𝜇(𝜌) ⋅ 𝜂}

We choose 𝜌 using Online Learning

cost(𝐴𝐿𝐺) ≤ (1 + 𝜖)(𝜌∗ ⋅ cost(𝑂𝑃𝑇) + 𝜇(𝜌∗) ⋅ 𝜂) + 𝑂(𝛽𝜖 log
1
𝜖)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
/ OPT

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Co
m

pe
tit

iv
e

ra
tio

Online algorithm
Blindly follow predictions
Our algorithm

15/16

Experimental results

0 2 4 6 8

Noise parameter of the synthetic predictor

1.0

1.1

1.2

1.3

1.4

1.5

C
o
m

p
e
ti

ti
ve

 r
a
ti

o

Standard online algorithm

Our algorithm
Purohit et al.

Thank you for your attention!

16/16

Experimental results

0 2 4 6 8

Noise parameter of the synthetic predictor

1.0

1.1

1.2

1.3

1.4

1.5

C
o
m

p
e
ti

ti
ve

 r
a
ti

o

Standard online algorithm

Our algorithm
Purohit et al.

Thank you for your attention!

16/16

	Dynamic power management (DPM)
	Dynamic power management: previous works
	Learning-augmented algorithms
	Predictions for DPM
	Our results
	Outline of the technical part
	Ski rental
	Ski rental
	Ski rental: previous work
	Trade-off between consistency and error dependence
	Our new bound for ski rental
	Our algorithm for ski rental
	Ski rental → multistate DPM
	What ρ and μ are the best?
	What ρ and μ are the best?
	Experimental results

