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Introduction

Classical scheduling P||Cmax :
• n independent tasks with costs p1, . . . , pn;
• m identical processors;
• we want to minimize the time Cmax at which we finish executing the last

task.

We study the greedy heuristic Longest Processing Time (LPT):
• the tasks are greedily executed, from the longest one;
• simple, low complexity;
• good performance in theory and in practice.

We study its asymptotic behavior for specific workload distributions.
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Example

Example instance, with 10 tasks and 3 processors:

3 8 4

9 8

9 7

1 6 8

The solution of LPT:

88 4

9 8 3 1
9 7 6
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Motivation

We study one of the most basic scheduling problems:
• no precedence graph;
• no communication cost;
• machines are identical;
• the execution times of tasks are fully given (offline);
• each task is executed on a single processor.

By refining our understanding of the behavior of LPT in this simple case,
we hope to better understand why LPT behaves well or not in more
complex setups.
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Contributions

• theoretical study of LPT under the constraint that the distribution of the
workload is a Uniform integer composition:

• the costs of the tasks are not independently and identically distributed
variables;

• the tasks may have a minimum non-zero cost.

• empirical study for several distributions:
• we found the literature to lack empirical assessments for the tightness of

theoretical bounds.
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Studied algorithms

• LPT: Largest Processing Time, with complexity O(n log n);
• LS: List Scheduling, with complexity O(n logm);
• MD: Median Discriminated, with complexity O(n logm);
• SLACK¬, with complexity O(n log n);
• LDM­, with complexity O(n(log n + m logm)).

¬Della Croce and Scatamacchia, “The Longest Processing Time rule for identical
parallel machines revisited”, 2020.

­Michiels et al., “Performance Ratios for the Karmarkar-Karp Differencing
Method”, 2003.
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Existing results

Problem Distribution Studied quantity Convergence/rate

P||Cmax U(0, 1) E [LPT]/E [OPT∗] 1 + O(m2/n2)®

P||Cmax
F (x) = xa,
0 < a <∞ LPT− OPT

O((log log(n)/n) 1
a )

almost surely
(a.s.)¯

P||Cmax as above E [(LPT− OPT)q] O((1/n)
a
q )¯

. . .
®Coffman, Frederickson, and Lueker, “Probabilistic analysis of the LPT processor

scheduling heuristic”, 1982.

¯Frenk and Rinnooy Kan, “The rate of convergence to optimality of the LPT rule”,
1986.
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Uniform integer composition

We present the distribution DW :

Definition (DW )

• the total amount of work W =
∑

pi is fixed;
• this work is split among the tasks;
• of all the possible splitting, a list of tasks L is chosen uniformly;

• example of D3: (1,1,1), (1,2), (2,1), (3) with probability 1
4 each;

• example situation: corresponds to a large application with unknown
parallelization;

• easy to sample.
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Uniform integer composition

Theorem
Algorithms LPT and SLACK are optimal for DW , with probability
1− O

(
1

W

)
. For any fixed number of machines m, for L a list of tasks

generated according to DW ,

P(LPT(L,m) = OPT(L,m)) = 1− O
( 1
W

)
, and

P(SLACK(L,m) = OPT(L,m)) = 1− O
( 1
W

)
, and

P(LDM(L,m) = OPT(L,m)) = 1− O
( 1
W

)
, and

P(MD(L,m) ≤ OPT(L,m) + 1) = 1− O
( 1
W

)
.
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Uniform integer composition with a minimum

We present the distribution DW ,pmin :

Definition (DW ,pmin)

• the total amount of work W =
∑

pi is fixed;
• this work is split among the tasks execution time at least pmin each;
• of all the possible splitting, a list of tasks L is chosen uniformly;

• example of D6,2: (2,2,2), (2,4), (3,3), (4,2) with probability 1
4 each;

• harder to sample than the previous version: we use dynamic programming.
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Uniform integer composition with a minimum

Theorem
Let m be a fixed number of machines. One has, for a list of tasks L
generated according to DW ,pmin ,

P(|LPT(L,m)− OPT(L,m)| ≤ pmin) −→
W→+∞

1 and

P(|SLACK(L,m)− OPT(L,m)| ≤ pmin) −→
W→+∞

1.

P(|LDM(L,m)− OPT(L,m)| ≤ pmin) −→
W→+∞

1.
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Empirical results – Optimality transform technique

The optimal solution for an instance is usually unknown.
In order to still have the optimality ratio of a solution, we add tasks so
that we know an optimal solution.

1 3 8 6

8 9 9

4 7 8

8

7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Can we measure the proximity between the original tasks and the
"padding" tasks?
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Empirical results – Optimality transform results
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Empirical results

We have 3 sets of experiments. We try LPT and the related heuristics
on:
1. instances with distribution function F (x) = xa with a > 0. We compare

the results to the asymptotic bound found by Frenk and Rinnooy Kan°.
They state that LPT− OPT should decrease in O(( log log(n)

n ) 1
a ) almost

surely;

2. realistic instances based on the Parallel Workload Archive (PWA);

3. instances with distribution following the Uniform integer composition
without a minimum (DW ) and with a minimum (DW ,pmin).

°Frenk and Rinnooy Kan, “The rate of convergence to optimality of the LPT rule”,
1986.
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Empirical results – F (x) = x a
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Empirical results – F (x) = x a
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Empirical results – Realistic instances

To create realistic instances, we computed the empirical Cumulative
Distribution Function from real instances.

Distributions of task costs for the KIT ForHLR II and NASA Ames iPSC/860
instances.

KIT ForHLR II NASA Ames iPSC/860 San Diego Supercomputer Center
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Empirical results – Realistic instances
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Empirical results – Unif. integer comp. (DW )

Distribution in percentages of the absolute errors observed for LS and MD with
W from 10 to 9999 and m ∈ {10, 30, 100}.

abs. err. LS MD abs. err. LS MD

0 3.4 67.7 6 9.1 0.04
1 10.7 30.3 7 5.0 < 0.01
2 17.0 0.96 8 2.7 0
3 18.1 0.58 9 1.5 0
4 17.3 0.28 10 0.7 0
5 13.7 0.08 >10 0.6 0

LPT and SLACK were always optimal.
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Empirical results – Unif. integer comp. (DW ,pmin)

Results on the difference between the Cmax computed by the heuristics and a
lower bound of the optimal makespan OPT. Each line is related to different
DW ,pmin . The results are presented as max – avg – std. Each value is obtained
with W from 10 to 9999 and for m ∈ {10, 30, 100}.

pmin LPT MD SLACK LDM

3 2 – 0.93 – 0.70 5 – 1.48 – 0.56 2 – 0.61 – 0.60 2 – 0.57 – 0.57
5 4 – 1.84 – 1.23 9 – 2.69 – 0.87 5 – 1.11 – 0.86 4 – 1.07 – 0.82
7 6 – 2.71 – 1.80 13 – 3.65 – 1.15 6 – 1.60 – 1.17 6 – 1.56 – 1.11
10 9 – 3.99 – 2.65 15 – 5.23 – 1.80 11 – 2.32 – 1.62 9 – 2.29 – 1.57

SLACK is better than LPT and LDM is slightly better than SLACK.
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Conclusion

What has been done:
• Definition and theoretical analysis of a distribution that is non-independent

that supports a minimum execution time pmin: the Uniform integer
composition (DW and DW ,pmin);

• Empirical comparison of five heuristics (LPT, MD, LS, SLACK, LDM)
under different distributions (F (x) = xa, realistic instance, Uniform integer
composition);

• Empirical evaluation of the bound on the convergence of LPT under the
distribution F (x) = xa. We found this bound to be tight.

Future work:
• introduce uncertainty in the costs pi of the tasks;
• explore dependent cost distributions other than the Uniform integer

composition;
• explore known independent distributions, but with a minimum execution

time.
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