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Introduction

Classical scheduling P||Cpmax:
® n independent tasks with costs pi, ..., pp;

® m identical processors;

® we want to minimize the time Cp,. at which we finish executing the last

task.
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Introduction

Classical scheduling P||Cpmax:
® n independent tasks with costs pi, ..., pp;
® m identical processors;

® we want to minimize the time Cp,. at which we finish executing the last
task.

We study the greedy heuristic Longest Processing Time (LPT):
® the tasks are greedily executed, from the longest one;
® simple, low complexity;
® good performance in theory and in practice.

We study its asymptotic behavior for specific workload distributions.
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Example

Example instance, with 10 tasks and 3 processors:

1 6 8
3 8 4
9 8
9 7
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Example

Example instance, with 10 tasks and 3 processors:

1 6 8
3 8 4

9 8

9 7

The solution of LPT:
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Motivation

We study one of the most basic scheduling problems:

no precedence graph;

no communication cost;

machines are identical;

the execution times of tasks are fully given (offline);

each task is executed on a single processor.
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Motivation

We study one of the most basic scheduling problems:
® no precedence graph;
® no communication cost;
® machines are identical;
® the execution times of tasks are fully given (offline);
® cach task is executed on a single processor.

By refining our understanding of the behavior of LPT in this simple case,
we hope to better understand why LPT behaves well or not in more
complex setups.
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Contributions

® theoretical study of LPT under the constraint that the distribution of the
workload is a Uniform integer composition:

® the costs of the tasks are not independently and identically distributed
variables;
® the tasks may have a minimum non-zero cost.

® empirical study for several distributions:

® we found the literature to lack empirical assessments for the tightness of
theoretical bounds.
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Studied algorithms

® LPT: Largest Processing Time, with complexity O(nlog n);

LS: List Scheduling, with complexity O(nlog m);

MD: Median Discriminated, with complexity O(nlog m);
SLACK®, with complexity O(nlog n);

LDM®, with complexity O(n(log n + mlog m)).

®Della Croce and Scatamacchia, “The Longest Processing Time rule for identical
parallel machines revisited”, 2020.

®Michiels et al., “Performance Ratios for the Karmarkar-Karp Differencing
Method", 2003.
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Existing results

Problem Distribution Studied quantity ~ Convergence/rate
P|| Crmax U(0,1) E[LPT]/E[OPT*] 1+ O(m?/n?)®
O((log log(n) /n) )
— a
P|| Crax Fix) =2, LPT — OPT almost surely
0<a<o @
(as.)
P|| Cnax as above E[(LPT — OPT)7] o((1/n)a)®

®Coffman, Frederickson, and Lueker, “Probabilistic analysis of the LPT processor
scheduling heuristic”, 1982.

®Frenk and Rinnooy Kan, “The rate of convergence to optimality of the LPT rule”,
1986.
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Uniform integer composition

We present the distribution Dy :
Definition (D)

the total amount of work W = 3" p; is fixed;
this work is split among the tasks;

of all the possible splitting, a list of tasks L is chosen uniformly;

example of Ds: (1,1,1), (1,2), (2,1), (3) with probability }1 each;

example situation: corresponds to a large application with unknown
parallelization;

easy to sample.
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Uniform integer composition

Theorem

Algorithms LPT and SLACK are optimal for Dy, with probability
1-0 (ﬁ) For any fixed number of machines m, for L a list of tasks

generated according to Dyy,

P(LPT(L, m) = OPT(L,m)) =1 — O (vlv> R

P(SLACK(L, m) = OPT(L,m)) =1 — O (Vlv) o

P(LDM(L, m) = OPT(L,m)) = 1 — O (;) .

P(MD(L, m) < OPT(L,m) +1) =1— O (vlv> .
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Uniform integer composition with a minimum

We present the distribution Dy p, . -

Definition (ID W, pmin )

® the total amount of work W = )" p; is fixed;

® this work is split among the tasks execution time at least p;, each;

of all the possible splitting, a list of tasks L is chosen uniformly;

e example of Dgo: (2,2,2), (2,4), (3,3), (4,2) with probability % each;

® harder to sample than the previous version: we use dynamic programming.
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Uniform integer composition with a minimum

Theorem
Let m be a fixed number of machines. One has, for a list of tasks L
generated according to Dy p...,

P(|LPT(L, m) — OPT(L, m)| < Pmin) Wt 1 and

P(|SLACK(L, m) — OPT(L, m)| < pmin)  —> 1.

—+o00

P(|LDM(L, m) — OPT(L,m)| < prin) ,— 1.

—+00
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Empirical results — Optimality transform techniqut‘a

The optimal solution for an instance is usually unknown.
In order to still have the optimality ratio of a solution, we add tasks so

that we know an optimal solution.

4 7 8 7
8 9 9
1 3 8 6 8
\
I I I I I I I I I I I I I I I I I I I I I I I I I 4
01 23 45 6 7 8 9 1011 1213 14 15 16 17 18 19 20 21 22 23 24 25 26
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Empirical results — Optimality transform technique

The optimal solution for an instance is usually unknown.
In order to still have the optimality ratio of a solution, we add tasks so

that we know an optimal solution.

4 7 8 7
8 9 9
1 3 8 6 8
\
I I I I I I I I I I I I I I I I I I I 4
01 23 45 6 7 8 9 1011 1213 14 15 16 17 18 19 20 21 22 23 24 25 26

Can we measure the proximity between the original tasks and the
"padding" tasks?
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Empirical results — Optimality transform results

g0="2
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— F(a)=a" Empirical CDF of the added tasks
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Empirical results

We have 3 sets of experiments. We try LPT and the related heuristics
on:

1. instances with distribution function F(x) = x? with a > 0. We compare
the results to the asymptotic bound found by Frenk and Rinnooy Kan®.
They state that LPT — OPT should decrease in O((%)i) almost
surely;

2. realistic instances based on the Parallel Workload Archive (PWA);

3. instances with distribution following the Uniform integer composition
without a minimum (Dw) and with a minimum (D ,,.).

®Frenk and Rinnooy Kan, “The rate of convergence to optimality of the LPT rule”,
1986.
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Empirical results — F(x) = x?

1.00-
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0.50 - — Expected value
Standard deviaton
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a (log)

Expected value and standard deviation of a random variable with cumulative
distribution function F(x) = x? as a function of a with 0 < a < oo.
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Empirical results — F(x) = x? ¢
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Empirical results — Realistic instances

To create realistic instances, we computed the empirical Cumulative
Distribution Function from real instances.

Distributions of task costs for the KIT ForHLR Il and NASA Ames iPSC/860
instances.

KIT ForHLR |1 NASA Ames iPSC/860 5an Diego Supercomputer Centel
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Empirical results — Realistic instances

2
;_]
o
2
=
& <
S z
:
O
wn
=]
w0
Q
il L] [

1 1 1 1 1 1 1 1 1
0 500 1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 2000
Number of tasks n

Heuristic B9 LDM B LPT F= LS - MD SLACK

llllE?N-cEt& 22 /27
TECHNOLOGIES



Empirical results — Unif. integer comp. (Dy/)

Distribution in percentages of the absolute errors observed for LS and MD with
W from 10 to 9999 and m € {10, 30, 100}.

abs. err. LS MD abs. err. LS MD
0 3.4 67.7 6 9.1 0.04
1 10.7 30.3 7 5.0 < 0.01
2 17.0 0.96 8 2.7 0
3 18.1 0.58 9 1.5 0
4 17.3 0.28 10 0.7 0
5 13.7 0.08 >10 0.6 0

LPT and SLACK were always optimal.
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Empirical results — Unif. integer comp. (Dw p,,)

Results on the difference between the C.x computed by the heuristics and a
lower bound of the optimal makespan OPT. Each line is related to different

Dw

s Pmin *

with W from 10 to 9999 and for m € {10,30, 100}.

The results are presented as max — avg — std. Each value is obtained

Prmin LPT MD SLACK LDM
3 2-093-070 5-148-05 2-061-060 2-0.57-0.57
5 4-184-123 9-269-087 5-111-08 4-1.07-0.82
7 6-271-180 13-365-115 6-160-117 6-156-1.11
10 9-399-265 15-523-180 11-232-162 9-229-157
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Empirical results — Unif. integer comp. (Dw p,,) .

Results on the difference between the C.x computed by the heuristics and a
lower bound of the optimal makespan OPT. Each line is related to different
Dw p,.,- The results are presented as max — avg — std. Each value is obtained
with W from 10 to 9999 and for m € {10,30, 100}.

Prmin LPT MD SLACK LDM

3 2-093-070 5-148-05 2-061-060 2-0.57-0.57
5 4-184-123 9-269-087 5-111-08 4-1.07-0.82
7 6-271-180 13-365-115 6-160-117 6-156-1.11
10 9-399-265 15-523-180 11-232-162 9-229-157

SLACK is better than LPT and LDM is slightly better than SLACK.
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Conclusion

What has been done:

® Definition and theoretical analysis of a distribution that is non-independent
that supports a minimum execution time ppi,: the Uniform integer
composition (Dy and Dy 5. );

® Empirical comparison of five heuristics (LPT, MD, LS, SLACK, LDM)
under different distributions (F(x) = x?, realistic instance, Uniform integer
composition);

® Empirical evaluation of the bound on the convergence of LPT under the
distribution F(x) = x?. We found this bound to be tight.
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Conclusion

What has been done:

® Definition and theoretical analysis of a distribution that is non-independent
that supports a minimum execution time ppi,: the Uniform integer
composition (Dy and Dy 5. );

® Empirical comparison of five heuristics (LPT, MD, LS, SLACK, LDM)
under different distributions (F(x) = x?, realistic instance, Uniform integer
composition);

® Empirical evaluation of the bound on the convergence of LPT under the
distribution F(x) = x?. We found this bound to be tight.

Future work:
® introduce uncertainty in the costs p; of the tasks;
® explore dependent cost distributions other than the Uniform integer
composition;
® explore known independent distributions, but with a minimum execution

time.
famto-st 26/ 27



Thank you for your attention

redouane.elghazi@femto-st.fr
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