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Motivating article

“Stochastic-based robust dynamic resource allocation for independent tasks
in a heterogeneous computing system”

by Salehi et al, Journal of Parallel and Distributed Computing Volume 97, November 2016, Pages 96-111

Heterogeneous oversubscribed system
Hard deadlines
Several types of tasks; each type is associated a distribution of task execution times
A global queue, and one queue per machine
At each event: recomputation of probabilities of success through convolutions (expensive)

Question: as the distribution of execution times is known, could we precompute things?
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Model

time0

1τ 2τ 3τ 4τ 5τ

A single periodic task (and a single processor)
A new task instance (or job) released with period τ

Each instance has a relative deadline of D with D > τ
(in the example D = 2.5τ)
Execution times follow some (known) probability distribution D (with unbounded support)
Overloaded system: not all jobs will succeed: a job is killed when it reaches its deadline
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Question: How could we optimize such a system?

Objective:
Deadline Miss Ratio (DMR) or job execution rate

Available mechanisms:
Do not admit all jobs
Do not start all admitted jobs
Kill some running jobs
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Overview

1 Scheduling

2 Markov model

3 Evaluation
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Scheduling policies

A scheduling policy must decide:
Which jobs should be admitted in the system
In which order to execute admitted jobs

All jobs have the same relative deadline: we always execute jobs in their order of arrival
(i.e., first come first served and earliest deadline first)

Whether to launch the execution of an admitted job
When to kill a running job
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Admission policies

We consider four admission policies:

1 Admit all jobs
Tag: AA (for All (jobs) Admitted)

2 Bounded queue of size m
Tag: Queue(m)

3 Random admission policy: a fraction α of jobs are randomly admitted
Tag: rand

4 Periodic admission policy: admission defined by a pattern A of length τA
Tag: per
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Control parameters

Example: a successful job released at time r whose execution ends at time e

Time

r r + s e r + D

1 Upper bound on completion time: dmax

A job released at time r will have its execution stopped at time r + dmax

(if it has not completed by that time)
Meaningful values for dmax: τ ≤ dmax ≤ D

2 Upper bound on execution time: lmax

Meaningful values for lmax: τ ≤ lmax ≤ dmax

3 Upper bound on starting time: smax

A job released at time r will not be allowed to start its execution later than at time r + smax

Meaningful values for smax: 0 ≤ smax ≤ dmax − τ
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Scheduling strategies

A scheduling strategy is defined entirely by:
an admission policy AP

a triplet (dmax, lmax, smax)

1 AP-NeverKill: each admitted job runs until either its completion or it is killed by its
deadline
(dmax, lmax, smax) = (D,D,D − τ)

2 Buffer(m): bounded queue keeping in the queue the m most recent available jobs
(dmax, lmax, smax) = (D,D,mτ − 1)

3 AP-BestDmax, AP-BestLmax, and AP-BestSmax: pick the value for dmax (resp.
lmax, smax) that minimizes the deadline miss ratio
We can also optimize for two or three parameters simultaneously:
AP-BestDmaxLmaxSmax
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Overview

1 Scheduling

2 Markov model

3 Evaluation
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Discrete distributions

If the distribution of job execution times is discrete one can
Use a Markov chain to describe the system under the NeverKill policy
Compute its stationary distribution and evaluate its performance

(pre-existing work)

Our aim
Discretize the continuous distributions
Model the system with a Markov chain for all admission policies and control parameters
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Discretization

Quantum duration q used to discretize all durations

Assume τ and D both last an integral number of quanta: τ =
⌊
τ
q

⌋
q and D =

⌊
D
q

⌋
q

In the following: we set that q lasts one arbitrary unit of time (for the sake of readability)
(q = 1 with the right choice of time unit)
The period now lasts τ quanta, and so on
pl : probability that a job execution time is equal to l (quanta) in the discretized version of
D

pl =

∫ lq

(l−1)q
f (x)dx .
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Notation

We study the evolution of the system due to the execution of a job S released at a time r

s: the time job S has to wait after its arrival in the system until the server is available
(Server available for S at the date r + s)

Job S is followed by a job T which is released at time r + τ

We compute the probability Ps,t that the server is available at time (r + τ) + t for job T
if it was available at time r + s for job S
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All jobs are admitted τ = 4, D = 12, dmax = D, lmax = 6, and smax = 5

Ps,t =



4∑
i=1

pi p5 1−
5∑

i=1

pi 0 0 0 0 0 0

3∑
i=1

pi p4 p5 1−
5∑

i=1

pi 0 0 0 0 0

2∑
i=1

pi p3 p4 p5 1−
5∑

i=1

pi 0 0 0 0

p1 p2 p3 p4 p5 1−
5∑

i=1

pi 0 0 0

0 p1 p2 p3 p4 p5 1−
5∑

i=1

pi 0 0

0 0 p1 p2 p3 p4 p5 1−
5∑

i=1

pi 0

0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0



Y. Gao, G. Pallez, Y. Robert and F. Vivien Strategies for Overloaded Real-Time Systems April 13, 2022 15 / 31



All jobs are admitted

Case 0 ≤ s ≤ smax and t = 0

Ps,0 =

min{lmax,dmax−s,τ−s}∑
l=1

pl +
∑

l≥min{lmax,dmax−s}+1
min{lmax,dmax−s}≤τ−s

pl

Case 0 ≤ s ≤ smax and t ≥ 1
Case max{1, 1+ s − τ} ≤ t ≤ s − τ +min{lmax, dmax − s} − 1: Ps,t = pt−s+τ

Case max{1, 1+ s − τ} ≤ t and t = s − τ +min{lmax, dmax − s}:
Ps,t = 1−

∑min{lmax,dmax−s}−1
l=1 pl

Case t > s − τ +min{lmax, dmax − s} or 1 ≤ t < 1+ s − τ : Ps,t = 0
Case s > smax {

Ps,max{0,s−τ} = 1
Ps,t = 0 if t 6= max{0, s − τ}
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Asymptotic behavior

Theorem
The Markov chains are all both irreducible and aperiodic, and they all admit a unique
stationary distribution.

(We show that all possible states are reachable from the initial state s = 0, that there is a path
from any state to the state 0, and that there is a loop from state 0 to itself.)

Corollary
For any admission policy and any choice of the parameters dmax, lmax, and smax, the system
converges to a unique asymptotic behavior.
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Resolution and Complexity

We solve the linear system

πt∞



4∑
i=1

pi p5 1−
5∑

i=1

pi 0 0 0 0 0 0

3∑
i=1

pi p4 p5 1−
5∑

i=1

pi 0 0 0 0 0

2∑
i=1

pi p3 p4 p5 1−
5∑

i=1

pi 0 0 0 0

p1 p2 p3 p4 p5 1−
5∑

i=1

pi 0 0 0

0 p1 p2 p3 p4 p5 1−
5∑

i=1

pi 0 0

0 0 p1 p2 p3 p4 p5 1−
5∑

i=1

pi 0

0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0



= πt∞ with
∑σ

s=0 π
(s)
∞ = 1

Deadline miss ratio: DMRAA = 1−
σ∑

s=0

π∞(s)

min{lmax,dmax−s}∑
l=1

pl

Theorem

The optimal value of p ≤ 3 parameters (chosen from dmax, lmax, and smax) can be computed in
time O(β3(Dq )

p), where β is the number of states of the Markov chain.
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Overview

1 Scheduling

2 Markov model

3 Evaluation
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Distributions: all have a mean of 1

Bimodal exponential µ1 = 1.005, µ2 = 0.995
µ1 = 0.1, µ2 = 1.9

Bimodal truncated normal µ1 = 0.5, σ1 ≈ 0.534, µ2 = 1, σ2 ≈ 1.068
µ1 = 0.01, σ1 ≈ 0.178, µ2 = 1, σ2 ≈ 1.782

Exponential µ = 1
Gamma k = 1

3 ≈ 0.333, θ = 3
Half-normal σ =

√
π
2 ≈ 1.253

Inverse Gamma α = 7
3 ≈ 2.333, β = 4

3 ≈ 1.333
Log-normal µ = 1, σ = 0.5

µ = 1, σ = 3
Truncated normal µ = 0.8, σ ≈ 0.754
Uniform a = 0, b = 2
Weibull k ≈ 0.411, λ = 1

Γ(1+ 1
k )
≈ 0.324

k = 1.5, λ = 1
Γ(1+ 1

k )
≈ 1.108
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Accuracy of simulations

smax = D (aka NeverKill) smax = 0.75 D smax = 0.50 D smax = 0.25 D

1e+02 1e+04 1e+06 1e+02 1e+04 1e+06 1e+02 1e+04 1e+06 1e+02 1e+04 1e+06
0.00

0.01

0.02

0.03

0.04

0.05

Number of simulated jobs

St
an
da
rd

de
vi
at
io
n

Percentile: 25% 50% 90% 95% 99% 100%

14 distributions × 19 periods × 5 relative deadlines = 1330 settings
100 random experiments for each parameter setting
We report the quantiles on the standard deviation of all scenarios

Simulations with 106 jobs are reliable (take 0.01 second)
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Discretization quantum

We plot the percentiles of the function
q 7→ |DMR(BestSmax(q))−DMR(BestSmax(0.001))|

Period ∈ [0.1; 2]

0.03 0.05 0.10
0.000

0.002

0.004

0.006

0.008

Quantum duration

A
bs
ol
ut
e
va
lu
e
of

de
vi
at
io
n

Percentile: 50% 75% 90% 95% 99% 100%

A quantum q = 0.1 is precise enough
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All jobs admitted: impact of dmax, lmax, and smax

Absolute difference of the achieved Deadline Miss Ratio

0.000

0.005

0.010

0.015

0.020

0.1 0.3 1.0

Period

Percentile: 50% 75% 90% 95% 99% 100%

BestSmax vs. BestDmaxLmaxSmax

Parameters dmax and lmax play no significant role in optimizing the DMR
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All jobs admitted: impact of smax

Deadline/Period: 2 Deadline/Period: 6 Deadline/Period: 10
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All jobs admitted: best value for smax

Best value for smax as a fraction of D − τ
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All jobs admitted: Buffer(m)
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All jobs admitted: binary search for best value for smax

Absolute difference in DMR
when the best value for smax is determined through a binary search
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Admission through bounded queues
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Random admission
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Periodic admission
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Conclusions and future work

Conclusions
To minimize the DMR, it is always better to admit all jobs and then to control their
execution, than to reject some jobs at submission time
The only (studied?) parameter that matters is smax, the maximum allowed waiting time
Discrete distributions can be modeled, analyzed and optimized using Markov chains
Continuous settings cannot be investigated analytically, but a rough discretization is
sufficient for their analysis

Future work
What if the task is not exactly periodic?
What if there are several tasks?
What if there are several processors?
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