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Introduction
Overview of key-value stores

Key-value store

Database where each value is
associated to a unique key.

• Fault-tolerance

• High scalability

• High performance

• No complex queries

• No strong consistency

Key Value

user.1 "Camille Noûs"
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Distributed KVS

Client

Request user.1

Response "Camille Noûs"
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Introduction
General architecture

Partitions

M1 M2

M3

M4M5

M6

Multi-server

• Each server M1,M2, . . . holds a data partition.
• Partitions are replicated on different servers.
• Several servers may process a read query.

Example

Say we want to query blue partition. We may direct
the operation towards M2, M3 or M4.
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Introduction
Tail latency problem

Tail latency problem

1 end-to-end request = many data items, i.e.,
many individual read queries.
Consequence: slowing < 1% of queries
may degrade the QoS for most users.

Some causes

• Background activities
• Hardware events
• Network queueing
• Query scheduling
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Model
Constraints

Graham’s notation Constraint

P Homogeneous environment
Mi Restricted assignment
ri Queries arrive over time
pi Heterogeneous queries
◦ No preemption

More constraints!

• Online model.
• Partially clairvoyant model.
• Assignment should be fast.
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Model
Objective function

How to mitigate tail latency?

Idea: bound the latency of
each request.

Graham’s notation
P|Mi , ri |maxwiFi .

Query latency → Flow time of i : Fi = Ci − ri

(Ci = completion time of i)

Bounding latency → Maximum flow Fmax = maxFi

Other metrics → Weighted flow time maxwiFi

(e.g., slowdown/stretch)
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Scheduling
Complexity

Preemption Class Ref.

Non-preemptive NP-hard Immediate
Non-migratory NP-hard [Ben Mokhtar et al. 2021]
Preemptive P [Legrand et al. 2008]

Complexity

• Non-preemptive problem is difficult.
• Task migration necessary to make problem easier.
• Migration is hard in a real-time system.
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Scheduling
Relaxed variants

Mi ri wi

No No Yes

Highest Weight First (HWF)

1. Sort tasks in non-increasing order of wi .
2. Put each task on the machine that completes it first.

Problem Algorithm Result Ref.

1||maxwiCi HWF Optimal [Hall 1993]
Q|pi = p|maxwiCi HWF Optimal Not yet published

P||maxwiCi HWF 2-approx. [Hall 1993]
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Scheduling
Relaxed variants

Mi ri wi

No Yes No

Earliest Finish Time (EFT)

When a task arrives, put it on the machine that completes it first.

Problem Algorithm Result Ref.

1|ri |Fmax EFT Optimal [Bender et al. 1998]
P|ri |Fmax EFT 3-approx. [Bender et al. 1998]
R|ri |Fmax LP + Rounding O(log n)-approx. [Bansal et al. 2015]
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Scheduling
Relaxed variants

Mi ri wi

No Yes Yes

Problem Algorithm Result Ref.

1|ri |maxwiFi Any CR ≥ ∆ + 1 Not yet published
R|ri , pmtn|maxwiFi LP Optimal [Legrand et al. 2008]

CR = competitive ratio
∆ = max pi/min pi

Lower bound

• Let I be any instance of the problem.
• Let S∗p (I) be an optimal preemptive solution.
• Then S∗p (I) ≤ S(I) for any non-preemptive solution S(I).
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Simulations
Heuristics

Replica selection Step 1: server assignment

EFT Select server completing the earliest

EFT-S Same as EFT, but large queries done by specialized servers

Héron Ref. [Jaiman et al. 2018]

LOR Ref. [Suresh et al. 2015]

Random Select server randomly

Local scheduling Step 2: processing order on servers

FIFO Process queries by order of arrival

MWF When idle, process query with highest weighted flow time

Ben Mokhtar et al. Scheduling in KVS and Application to Tail Latency Minimization. 11



Simulations
Results

Assumptions

• Stable network, no rare events

• Poisson process, heterogeneous
sizes (small++), uniform popularity

• No outdated information

Experiment

• Each scenario runs for 2 minutes

• Average load vs. 99th quantile of
flow/stretch

FIFO MWF (wi = 1/pi)
Flow

Stretch
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LOR RANDOM

Ben Mokhtar et al. Scheduling in KVS and Application to Tail Latency Minimization. 12



Simulations
Results

Experiment

• 1 boxplot = 10 scenarios

• 1 scenario = 1200 tasks/15 servers

• For each scenario

1. Solve the preemptive
instance with LP from
[Legrand et al. 2008]

2. Normalize the objective
obtained from simulation

• Red line = lower bound
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Simulations
Discussion

Replica selection

EFT close to lower bound. . . but hard to implement.

Local scheduling

Local policy may have positive effect on 99th quantile.

Metrics
Stretch should not be neglected to avoid delaying small queries.
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Conclusion

Takeaways

• Scheduling model for key-value stores.
• Difficulty of general problem and relaxed variants.
• Perfect information allow to attain lower bound for some non-trivial inputs.

Some perspectives

• Can we compute an even tighter lower bound?
• How would a degraded version of EFT behave?
• Introduce popularity biases.
• Extend to multiget operations.
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