
1/30

Resilient Scheduling of Moldable Jobs on
Failure-Prone Platforms

Anne Benoit1, Valentin Le Fèvre1, Lucas Perotin1,
Padma Raghavan2, Yves Robert1,3, Hongyang Sun2

1. Laboratoire LIP, ENS Lyon, France
2. Vanderbilt University, USA

3. University of Tennessee Knoxville, USA

lucas.perotin@ens-lyon.fr

Groupe de travail SCALE

lucas.perotin@ens-lyon.fr


2/30

What Is This Paper About?

On large-scale HPC platforms:

Scheduling parallel jobs is important to improve application
performance and system utilization;

Handling job failures is critical as failure/error rates increase
dramatically with size of system.

This paper combines job scheduling and failure handling for moldable
parallel jobs running on large HPC platforms that are prone to failures.



3/30

Outline

1 The model

2 Moldable jobs
Lpa-List Scheduling Algorithm
Batch-List Scheduling Algorithm
Performance Evaluation



4/30

Parallel job models

In the scheduling literature:

Rigid jobs: Processor allocation is fixed.

Moldable jobs: Processor allocation is decided by the system but
cannot be changed.

Malleable jobs: Processor allocation can be dynamically changed.

We focus on moldable jobs, because:

They can easily adapt to the amount of available resources
(contrarily to rigid jobs)

They are easy to design/implement (contrarily to malleable jobs)

Many computational kernels in scientific libraries are provided as
moldable jobs



5/30

Scheduling model

n moldable jobs to be scheduled on P identical processors

Job j (1 ≤ j ≤ n): Choose processor allocation pj (1 ≤ pj ≤ P)

Execution time tj (pj ) of each job j is a function of pj

Area is aj (pj ) = pj × tj (pj )

Jobs are subject to arbitrary failure scenarios, which are unknown
ahead of time (i.e., semi-online)

Minimize the makespan (successful completion time of all jobs)



6/30

Speedup models

Roofline model: tj(pj) = wj
max(pj ,p̄j ) , for some 1 ≤ p̄j ≤ P

Communication model: tj(pj) = wj
pj

+ (pj − 1)cj ,
where cj is the communication overhead
Amdahl’s model: tj(pj) = wj

(1−γj
pj

+ γj
)
,

where γj is the inherently sequential fraction
Mix model: tj(p) = wj (1−γj )

min(p,p̄j ) + wjγj + (p − 1)cj ,
is the generalization of the three previous models
Power model: tj(p) = wj/pδj ,
observed in some linear algebra applications
Monotonic model: tj(pj) ≥ tj(pj + 1) and aj(pj) ≤ aj(pj + 1),
i.e., execution time non-increasing and area is non-decreasing
Arbitrary model: tj(pj) is an arbitrary function of pj

Rigid jobs: pj is fixed and hence execution time is tj



7/30

Failure model
Jobs can fail due to silent errors (or silent data corruptions)
A lightweight silent error detector (of negligible cost) is available to
flag errors at the end of each job’s execution
If a job is hit by silent errors, it must be re-executed (possibly
multiple times) till successful completion

A failure scenario f = (f1, f2, . . . , fn) describes the number of failures each
job experiences during a particular execution

Example: f = (2, 1, 0, 0, 0) for an execution of 5 jobs



8/30

Problem complexity

Scheduling problem clearly NP-hard (failure-free is a special case)

A scheduling algorithm Alg is said to be a c-approximation if its
makespan is at most c times that of an optimal scheduler for all
possible sets of jobs, and for all possible failure scenarios, i.e.,

TAlg(f, s) ≤ c · TOpt(f, s∗)

TOpt(f, s∗) denotes the optimal makespan with scheduling
decision s∗ under failure scenario f



9/30

Outline

1 The model

2 Moldable jobs
Lpa-List Scheduling Algorithm
Batch-List Scheduling Algorithm
Performance Evaluation



10/30

Main Results

We proposed two resilient scheduling algorithms with analysis of
approximation ratios∗ and simulation results.

1 A list-based scheduling algorithm, called Lpa-List, and
approximation results for several speedup models.

2 A batch-based scheduling algorithm, called Batch-List, and
approximation result for the arbitrary speedup model.

3 Extensive simulations to evaluate and compare (average and
worst-case) performance of both algorithms against baseline
heuristics.

∗A scheduling algorithm Alg is said to be a c-approximation if its
makespan is at most c times that of an optimal algorithm Opt, i.e.,
TAlg ≤ c · TOpt, for any job set under any failure scenario.



11/30

Outline

1 The model

2 Moldable jobs
Lpa-List Scheduling Algorithm
Batch-List Scheduling Algorithm
Performance Evaluation



12/30

(1) Lpa-List Scheduling Algorithm

Two-phase scheduling approach:

Phase 1: Allocate processors to jobs using the Local Processor
Allocation (Lpa) strategy.

Minimize a local ratio individually for each job as guided by
the property of the List scheduling (next slide).
The processor allocation will remain unchanged for different
execution attempts of the same job.

Phase 2: Schedule jobs with fixed processor allocations using the
List Scheduling (List) strategy.

Organize all jobs in a list according to any priority order;
Schedule the jobs one by one at the earliest possible time (with
backfilling whenever possible);
If a job fails after an execution, insert it back into the queue for
rescheduling. Repeat this until the job completes successfully.



13/30

(1) Lpa-List Scheduling Algorithm
Given a processor allocation p = (p1, p2, . . . , pn) and a failure scenario
f = (f1, f2, . . . , fn):

A(f,p) =
∑

j aj (pj ): total area of all jobs;
tmax(f,p) = maxj tj (pj ): maximum execution time of any job.

Property of List Scheduling
For any failure scenario f, if the processor allocation p satisfies:

A(f,p) ≤ α · A(f,p∗) ,
tmax(f,p) ≤ β · tmax(f,p∗) ,

where p∗ is the processor allocation of an optimal schedule, then a List
schedule using processor allocation p is r(α, β)-approximation:

r(α, β) =
{

2α, if α ≥ β
P

P−1α + P−2
P−1β, if α < β

(1)

Eq. (1) is used to guide the local processor allocation (Lpa) for each job.



14/30

(1) Lpa-List Scheduling Algorithm
Approximation results of Lpa-List for some speedup models:

Speedup Model Approximation Ratio
Roofline 2

Communication 3†

Amdahl 4
Mix 6

Power
√

P
Monotonic Θ(

√
P)

Advantages and disadvantages of Lpa-List:
Pros: Simple to implement, and constant approximation for some
common speedup models.
Cons: Uncoordinated processor allocation, and high approximation
for monotonic/arbitrary model.

†For the communication model, our approx. ratio (3) improves upon the
best ratio to date (4), which was obtained without any resilience considerations:
[Havill and Mao. Competitive online scheduling of perfectly malleable jobs with setup
times, European Journal of Operational Research, 187:1126–1142, 2008]



15/30

Outline

1 The model

2 Moldable jobs
Lpa-List Scheduling Algorithm
Batch-List Scheduling Algorithm
Performance Evaluation



16/30

(2) Batch-List Scheduling Algorithm
Batched scheduling approach:

Different execution attempts of the jobs are organized in batches
that are executed one after another;
In each batch k (= 1, 2, . . . ), all pending jobs are executed a
maximum of 2k−1 times;
Uncompleted jobs in each batch will be processed in the next batch.

Example: an execution of 5 jobs under a failure scenario f = (1, 5, 1, 0, 3).



17/30

(2) Batch-List Scheduling Algorithm
Batched scheduling approach:

Different execution attempts of the jobs are organized in batches
that are executed one after another;
In each batch k (= 1, 2, . . . ), all pending jobs are executed a
maximum of 2k−1 times;
Uncompleted jobs in each batch will be processed in the next batch.

Example: an execution of 5 jobs under a failure scenario f = (1, 5, 1, 0, 3).



18/30

(2) Batch-List Scheduling Algorithm
Batched scheduling approach:

Different execution attempts of the jobs are organized in batches
that are executed one after another;
In each batch k (= 1, 2, . . . ), all pending jobs are executed a
maximum of 2k−1 times;
Uncompleted jobs in each batch will be processed in the next batch.

Example: an execution of 5 jobs under a failure scenario f = (1, 5, 1, 0, 3).



19/30

(2) Batch-List Scheduling Algorithm
Batched scheduling approach:

Different execution attempts of the jobs are organized in batches
that are executed one after another;
In each batch k (= 1, 2, . . . ), all pending jobs are executed a
maximum of 2k−1 times;
Uncompleted jobs in each batch will be processed in the next batch.

Example: an execution of 5 jobs under a failure scenario f = (1, 5, 1, 0, 3).



20/30

(2) Batch-List Scheduling Algorithm

Within each batch k:

Processor allocations are done for pending jobs using the
Mt-Allotment algorithm‡, which guarantees near optimal
allocation (within a factor of 1 + ε).

The maximum of 2k−1 execution attempts of the pending jobs are
scheduling using the List strategy.

Approximation Result of Batch-List
The Batch-List algorithm is Θ((1 + ε) log2(fmax))-approximation for
arbitrary speedup model, where fmax = maxj fj is the maximum number
of failures of any job in a failure scenario.

‡The algorithm has runtime polynomial in 1/ε and works for jobs in
SP-graphs/trees (of which a set of independent linear chains is a special case).
[Lepère, Trystram, and Woeginger. Approximation algorithms for scheduling malleable
tasks under precedence constraints. European Symposium on Algorithms, 2001]



21/30

(2) Batch-List Scheduling Algorithm
Batched scheduling approach:

Approximation Result of Batch-List
The Batch-List algorithm is Θ((1 + ε) log2(fmax))-approximation for
arbitrary speedup model, where fmax = maxj fj is the maximum number
of failures of any job in a failure scenario.

Example: an execution of 5 jobs under a failure scenario f = (1, 5, 1, 0, 3).



22/30

(2) Batch-List Scheduling Algorithm

Batched scheduling approach:

Approximation Result of Batch-List
The Batch-List algorithm is Θ((1 + ε) log2(fmax))-approximation for
arbitrary speedup model, where fmax = maxj fj is the maximum number
of failures of any job in a failure scenario.

Example: an execution of 5 jobs under a failure scenario f = (1, 5, 1, 0, 3).



23/30

Outline

1 The model

2 Moldable jobs
Lpa-List Scheduling Algorithm
Batch-List Scheduling Algorithm
Performance Evaluation



24/30

Performance Evaluation

We evaluate the performance of our algorithms using simulations.

Synthetic jobs under three speedup models (Roofline,
Communication, Amdahl) and different parameter settings;

Job failures follow exponential distribution with varying error rate λ;

Baseline algorithms for comparison:
MinTime: allocates processors to minimize execution time of
each job and schedules jobs using List;
MinArea: allocates processors to minimize area of each job
and schedules jobs using List.

Priority rules used in List:
LPT (Longest Processing Time);
HPA (Highest Processor Allocation);
LA (Largest Area).



25/30

Simulation Results — with P =7500, n=500, and λ=10−7

Lpa and Batch generally perform better than the baselines;

MinTime performs well for Roofline model, is average for Mix
model but performs badly for Amdahl’s model;

MinArea performs the worst for all models;

LPT and LA priorities perform similarly, but better than HPA.

(a) Roofline model (b) Amdahl’s model (c) Mix model



26/30

Simulation Results — with varying number of processors P

In Roofline model, Lpa (and MinTime) has better performance,
thanks to it simple and effective local processor allocation strategy.
In Amdahl’s model (where parallelizing a job becomes less efficient
due to extra communication overhead), Batch has the best
performance, thanks to its coordinated processor allocation.
In Mix model, Batch is slightly better than Lpa while MinTime is
near optimal with a lot of processors, but takes poor decisions with
few processors;

5000 10000 15000
P

1.0

1.5

2.0

2.5

N
or

m
al

iz
ed

m
ak

es
pa

n

roofline
Lpa

Batch

MinTime

(d) Roofline model

5000 10000 15000
P

1.0

1.5

2.0

2.5

N
or

m
al

iz
ed

m
ak

es
pa

n

amdahl
Lpa

Batch

(e) Amdahl’s model

5000 10000 15000
P

100

101

N
or

m
al

iz
ed

m
ak

es
pa

n

mix
Lpa

Batch

MinTime

(f) Mix model



27/30

Simulation Results — with varying number of jobs n

Same pattern of relative performance (as in last slide) for the three
algorithms under the three speedup models;

In Roofline and Communication models, having more jobs reduces
number of available processors per job, thus reducing the total idle
time between batches ⇒ performance gap between Batch and
Lpa is decreasing (instead of increasing as in last slide).

100 300 500 750 1000
n

1.0

1.5

2.0

2.5

3.0

3.5

N
or

m
al

iz
ed

m
ak

es
pa

n

roofline
Lpa

Batch

MinTime

(g) Roofline model

100 300 500 750 1000
n

1.0

1.5

2.0

2.5

3.0

3.5

N
or

m
al

iz
ed

m
ak

es
pa

n

amdahl
Lpa

Batch

(h) Amdahl’s model

100 300 500 750 1000
n

1.0

1.5

2.0

2.5

3.0

3.5

N
or

m
al

iz
ed

m
ak

es
pa

n

mix
Lpa

Batch

MinTime

(i) Mix model



28/30

Simulation Results — with varying error rate λ

Same pattern of relative performance (as in last two slides) for the
three algorithms under the three speedup models;

A higher error rate increases the number of failures per jobs, which
has little impact on Lpa and MinTime, but degrades performance
of Batch (corroborating our approximation results).

10−8 10−7 10−6

λ

1

2

3

N
or

m
al

iz
ed

m
ak

es
pa

n

roofline
Lpa

Batch

MinTime

(j) Roofline model

10−8 10−7 10−6

λ

1

2

3

N
or

m
al

iz
ed

m
ak

es
pa

n
amdahl

Lpa

Batch

(k) Amdahl’s model

10−8 10−7 10−6

λ

1

2

3

N
or

m
al

iz
ed

m
ak

es
pa

n

mix
Lpa

Batch

MinTime

(l) Communication model



29/30

Simulation Results — Summary

Both of our algorithms (Lpa and Batch) perform significantly
better than the baseline (MinTime and MinArea);

Batch is alwats within a factor of 1.58 of the optimal on average,
and within a factor of 4.164 of the optimal in the worst case.
→ Adapts nicely to any to all speedup model

LIST also have good performance, and is better than Batch in
roofline and communication models.

Table: Summary of the performance for three algorithms.
Speedup Model Roofline Com Amdahl Mix Power

Lpa Expected 1.057 1.312 1.961 1.867 1.861
Maximum 1.219 2.241 2.349 1.995 9.655

Batch Expected 1.158 1.434 1.529 1.571 1.549
Maximum 1.999 2.449 2.874 4.164 3.975

MinTime Expected 1.057 2.044 15.567 2.704 20.386
Maximum 1.219 2.666 49.795 27.174 61.726



30/30

Conclusion

Take-aways:

Future shared clusters demand simultaneous resource scheduling
and resilience considerations for parallel applications;

We proposed two resilient scheduling algorithms for moldable
parallel jobs with provable performance guarantees;

Extensive simulation results demonstrate the good performance of
our algorithms under several common speedup models.

Future Work/Work in progress:

Considering the use of checkpointing to improve efficiency of
scheduling;

Analysis of average-case performance of the algorithms (e.g., when
some failure scenarios occur with higher probability);


	The model
	Moldable jobs
	Lpa-List Scheduling Algorithm
	Batch-List Scheduling Algorithm
	Performance Evaluation


