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Context and positioning First heuristics Second heuristics Conclusions and perspectives

Need for robustness

Context
Entries = data decision = optimization

Uncertainty in data Robust decision
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Uncertainty definition

Definition, cause, available information
Uncertainty= epistemic situation with unknown or imperfect information

It can be caused by future events, physical measurements that are
already made, or the unknown

Available information or assumptions can exist: probability distribution,
belonging to a set, information from the past, etc.

Uncertainty in an optimization problem:

min
x∈Xd

f (x , d),

Xd : feasible set under the realization d .
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Chosen model of uncertainty

• Different approaches exist

• The choice of the approach is made for many reasons: how close to
representing the reality, how easy the problem is to solve
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Different definitions of worst case based approaches

Absolute robust
decision

Robust deviation
decision

Relative robust
decision

Uncertainty sets

Discrete set Interval set
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Chosen model of uncertainty

Different definitions of worst case based approaches

Absolute robust
decision

Robust deviation
decision

Relative robust
decision

[Kouvelis et al. 2004, Buchheim and Kurtz 2018]

min
x∈Xd

f (x, d)

zA = min
x∈∩d∈U Xd

max
d∈U

f (x, d)

U is an uncertainty set
Best in worst case, with cost=objective

Uncertainty sets

Discrete set Interval set
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Different definitions of worst case based approaches

Absolute robust
decision

Robust deviation
decision

Relative robust
decision

[Kouvelis et al. 2004, Buchheim and Kurtz 2018]

min
x∈Xd

f (x, d)

zD = min
x∈∩d∈U Xd

max
d∈U

(
f (x, d)− f (x∗d , d)

)
Best in worst case, with cost=deviation from optimal

Uncertainty sets

Discrete set Interval set
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[Kouvelis et al. 2004, Buchheim and Kurtz 2018]

min
x∈Xd

f (x, d),

zR = min
x∈∩d∈U Xd

max
d∈U

f (x, d)− f (x∗d , d)

f (x∗d , d)

Best in worst case, with cost=relative deviation from optimal

Uncertainty sets

Discrete set Interval set
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Chosen model of uncertainty

Different definitions of worst case based approaches

Absolute robust
decision

Robust deviation
decision

Relative robust
decision

Why absolute robust decision?

• Avoid to compute optimal solutions of all scenarios

Uncertainty sets

Discrete set Interval set
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Chosen model of uncertainty

Different definitions of worst case based approaches

Absolute robust
decision

Robust deviation
decision

Relative robust
decision

Uncertainty sets

Discrete set

Interval set

[Li et al. 2011]
U = {c1, . . . , cn}
• Good model

• Combinatorial

=⇒ explosion
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Chosen model of uncertainty

Different definitions of worst case based approaches

Absolute robust
decision

Robust deviation
decision

Relative robust
decision

Uncertainty sets

Discrete set Interval set

[Li et al. 2011]
U = Πm

i=1[ai , bi ]
Easy
Easy

• Do not consider
correlation

• Easy
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Chosen model of uncertainty

Different definitions of worst case based approaches

Absolute robust
decision

Robust deviation
decision

Relative robust
decision

Uncertainty sets

Discrete set Interval set Ellipsoidal set
[Li et al. 2011]
Confidence region for multinormal distribution
U = {c ∈ Rm; (c − µ)T Σ−1(c − µ) ≤ Ω2}
• Consider correlation

• Hard
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Chosen model of uncertainty

Different definitions of worst case based approaches

Absolute robust
decision

Robust deviation
decision

Relative robust
decision

Uncertainty sets

Discrete set Interval set Ellipsoidal set

Why ellipsoidal uncertainty?

• Consider correlations

• Avoid the pessimism of general robust min-max optimization
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Chosen problem to solve

General problems:
min
x∈Xd

f (x , d)

Consider binary linear problems with uncertainty in cost

min
x∈X

cT x , X = {x ∈ {0, 1}m; Ax = b}

Examples: Shortest path problem, k-median clustering problem, etc.
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Complexity and existing methods

The absolute robust counterpart of binary linear problems under ellipsoidal
uncertainty gives

min
x∈X

max
c∈U

cT x → min
x∈X

µT x +
√

xT Σx = min
x∈X

g(x) (1)

[Ilyina 2017] (µT x + Ω
√

xT Σx → µT x +
√

xT Σx : replace Σ by Ω2Σ)

Problem (1) is a binary non-linear problem =⇒ NP-hard

Methods to solve Problem (1)

Exact
methods
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xT Σx = min
x∈X

g(x) (1)

[Ilyina 2017] (µT x + Ω
√

xT Σx → µT x +
√

xT Σx : replace Σ by Ω2Σ)

Problem (1) is a binary non-linear problem =⇒ NP-hard

Methods to solve Problem (1)

Exact
methods

• Writing (1) as a Binary Second Order Cone Program permits us to use existing exact solvers
based on Branch-and-Bound methods (e.g., CPLEX)

• Research work about exact methods are proposed :

• [Ilyina et al 2017]

• [Buchheim et al. 2017]: A Frank-Wolfe based Branch-and-bound algorithm
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Complexity and existing methods

The absolute robust counterpart of binary linear problems under ellipsoidal
uncertainty gives

min
x∈X

max
c∈U

cT x → min
x∈X

µT x +
√

xT Σx = min
x∈X

g(x) (1)

[Ilyina 2017] (µT x + Ω
√

xT Σx → µT x +
√

xT Σx : replace Σ by Ω2Σ)

Problem (1) is a binary non-linear problem =⇒ NP-hard

Methods to solve Problem (1)

Exact
methods

Heuristic
approaches

There is no proposition of a heuristic approach

Exact methods are not scalable

=⇒ Proposition of a heuristics with the idea of adapting Frank-Wolfe, this time for a
heuristics
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Outline

1. Context and positioning

2. A Frank-Wolfe based heuristic approach applied on the robust shortest
path problem

3. Another Frank-Wolfe based heuristic approach applied on the robust
k-median clustering problem

4. Conclusions and perspectives
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Postitioning

Recall the positioning

Consider uncertainty in problems of the form

min
x∈X

cT x , X = {x ∈ {0, 1}m; Ax = b}

The absolute robust decision under ellipsoidal uncertainty gives

min
x∈X

max
c∈U

cT x → min
x∈X

µT x +
√

xT Σx

The goal is to solve

min
x∈X

µT x +
√

xT Σx = min
x∈X

g(x) (2)

Since, the work is based on Frank-Wolfe, recall first the classical
Frank-Wolfe algorithm
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The classical Frank-Wolfe algorithm

f convex, continuously differentiable defined on a compact convex D.
Consider convex optimization problems of the form

min
x∈D

f (x)

Frank-Wolfe algorithm
Let x (0) ∈ D
for k = 0 to K do

compute s(k) := argmin
s∈D

∇f (x (k))T s

update x (k+1) := (1− γ(k))x (k) + γ(k)s(k)

end for [Jaggi 2013]

Need for an adapted algorithm
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s∈D

∇f (x (k))T s

update x (k+1) := (1− γ(k))x (k) + γ(k)s(k)

end for [Jaggi 2013]

s(k) = argmin
s∈D

[f (x (k)) +∇f (x (k))T (s − x (k))] = argmin
s∈D

∇f (x (k))T s

Need for an adapted algorithm
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The classical Frank-Wolfe algorithm

f convex, continuously differentiable defined on a compact convex D.
Consider convex optimization problems of the form

min
x∈D

f (x)

Frank-Wolfe algorithm
Let x (0) ∈ D
for k = 0 to K do

compute s(k) := argmin
s∈D

∇f (x (k))T s

update x (k+1) := (1− γ(k))x (k) + γ(k)s(k)

end for [Jaggi 2013]

Step-size
• γ(k) = 2

k+2

• γ(k) = argmin
α∈[0,1]

f
(
(1− α)x (k) + αs(k)) (line search step)

Need for an adapted algorithm
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The proposed approach

The idea behind
Use classical Frank-Wolfe to solve

min
x∈Conv(X)

µT x +
√

xT Σx

X = {x ∈ {0, 1}m; Ax = b}
Conv(X) = {x ∈ [0, 1]m; Ax = b}

The solution is not feasible

The gradient is not well defined in zero

Before proceeding, some assumptions are needed
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The proposed approach

First some assumptions
Three assumptions are necessary to our approach

(A1) For any real-valued vector a, there exists an efficient algorithm to
solve minx∈X aT x

(A2) For any real-valued vector a, there exists a solution for
minx∈Conv(X) aT x that belongs to X

(A3) 0Rm does not belong to X

Recall X , Conv(X )
X = {x ∈ {0, 1}m; Ax = b}

Conv(X ) = {x ∈ [0, 1]m; Ax = b}

Thanks to (A3), for all x ∈ X , the gradient of g is well defined

∇g(x) = µ+
Σx√
xT Σx

12 / 29
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The idea behind
Use classical Frank-Wolfe to solve

min
x∈Conv(X)

µT x +
√

xT Σx

Consider the best intermediate solution, that is feasible thanks to the
assumptions.
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The proposed approach

DFW: a Frank-Wolfe based algorithm to solve
(2)

1: x (0) a random feasible solution, ε > 0 close to zero, K
a maximum number of iterations.

2: k ← 1
3: stop← false
4: while k ≤ K and ¬stop do
5: if g(x (k−1))− g(x (k)) < ε: then
6: stop← true
7: else
8: s(k) ∈ argmin

y∈Conv(X)

∇g(x (k))T y , with s(k) ∈ X

9: γ(k) ← argmin
α∈[0,1]

g(x (k) + α(s(k) − x (k)))

10: x (k+1) ← (1− γ(k))x (k) + γ(k)s(k)

11: end if
12: k + +
13: end while
14: return argmin

s∈{s(1),...,s(k−1)}
g(s)

• s(k) minimum linear ap-
proximation

• s(k) ∈ X thanks to As-
sumption (A2)

• Line search step: mini-
mize g(x (k+1))

• x (k) converges in Conv(X )

• We look at s(k): return the
best one of all the itera-
tions

14 / 29
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Numerical setup

Berlin Mitte-Center graph with 398 nodes and 871 edges with an illustration
of a path from node 1 to node 294
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Numerical setup

Undirected grid graph L× L, source node: 1, destination node L2

Grid graph 6× 6 with 36 nodes and
60 edges Grid graph 34× 34 with 1156

nodes and 2244 edges
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Numerical setup

Setup
• The robust shortest path problem from node 1 to node L2

• Ω = 1, (µ,Σ, x0) random
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Numerical results: behavior of the algorithm for L = 34

Denote, at each iteration k , the best solution so far as
s(k)

opt = argmins(l)∈{s(1),...,s(k)} g(s(l))
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(b). Evolution of g(s(k)
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Numerical results

Results
• Change size of the graph

• Compare with the solutions provided by CPLEX

• For small to medium graphs, DFW gives the same solution as CPLEX

• L ≥ 40, branch-and-bound no more efficient

• L = 46, CPLEX stops after 2 hours and a half

200 iterations of DFW takes half an hour

Same solution as best integer of CPLEX
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Outline

1. Context and positioning

2. A Frank-Wolfe based heuristic approach applied on the robust shortest
path problem

3. Another Frank-Wolfe based heuristic approach applied on the robust
k-median clustering problem

4. Conclusions and perspectives
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The k-median clustering problem

Choose k clusters to minimize the sum of the distances between the points
and their cluster centers

min
z∈Rn×n

n∑
i=1

n∑
j=1

d(pi , pj )zij

s.t.
n∑

i=1

zij = 1 ∀j ∈ {1, . . . , n}

zij ≤ yi ∀i, j ∈ {1, . . . , n}2

n∑
i=1

yi = k

zij , yi ∈ {0, 1}

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

Simple example of a two cluster solution of
a k-median problem for n = 10 points
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The k-median clustering problem

Choose k clusters to minimize the sum of the distances between the points
and their cluster centers

min
z∈Rn×n

n∑
i=1

n∑
j=1

d(pi , pj )zij

s.t.
n∑

i=1

zij = 1 ∀j ∈ {1, . . . , n}

zij ≤ yi ∀i, j ∈ {1, . . . , n}2

n∑
i=1

yi = k

zij , yi ∈ {0, 1}

In a matrix representation,

zii = yi , i ∈ {1, . . . , n}
yi = 1 =⇒ pi center

zij = 1 =⇒ pj associated to center pi
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The k-median clustering problem

Choose k clusters to minimize the sum of the distances between the points
and their cluster centers

min
z∈Rn×n

n∑
i=1

n∑
j=1

d(pi , pj )zij

s.t.
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zij = 1 ∀j ∈ {1, . . . , n}

zij ≤ yi ∀i, j ∈ {1, . . . , n}2

n∑
i=1

yi = k

zij , yi ∈ {0, 1}

Constraint (C1):
Sum of each column = 1

Every point is associated to one and
only cluster center
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The k-median clustering problem

Choose k clusters to minimize the sum of the distances between the points
and their cluster centers

min
z∈Rn×n
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zij = 1 ∀j ∈ {1, . . . , n}

zij ≤ yi ∀i, j ∈ {1, . . . , n}2

n∑
i=1

yi = k

zij , yi ∈ {0, 1}

Constraint (C2):
Non-diagonal ≤ diagonal

If associate point to point

=⇒ the second is a center
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The k-median clustering problem

Choose k clusters to minimize the sum of the distances between the points
and their cluster centers

min
z∈Rn×n

n∑
i=1

n∑
j=1

d(pi , pj )zij

s.t.
n∑

i=1

zij = 1 ∀j ∈ {1, . . . , n}

zij ≤ yi ∀i, j ∈ {1, . . . , n}2

n∑
i=1

yi = k

zij , yi ∈ {0, 1}

Constraint (C3):
Trace = k

Exactly k centers
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Presence of uncertainty

If the distances are uncertain in the k-median clustering problem

Need for a robust solution

The k-median clustering problem can be written as

min dT z (3)

s.t. Σn
i=1zn(i−1)+j = 1 ∀j ∈ {1, . . . , n}

zn(i−1)+j ≤ zn(i−1)+i ∀i, j ∈ {1, . . . , n}2

Σn
i=1zn(i−1)+i = k

z ∈ {0, 1}n2

• A flattening step

• A proof for equivalence of the definition of uncertainty between the two
writings
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Robust decision under ellipsoidal uncertainty

The absolute robust k-median clustering problem under ellipsoidal
uncertainty is

min
z∈X

µT z +
√

zT Σz (4)

with

X =
{

z ∈ {0, 1}n2
s.t.

Σn
i=1zn(i−1)+j = 1 ∀j ∈ {1, . . . , n},

zn(i−1)+j ≤ zn(i−1)+i∀i, j ∈ {1, . . . , n}2,

Σn
i=1zn(i−1)+i = k

}

This follows the formulation of our study

Assumption (A2) not satisfied: no exact binarity relaxation
=⇒ cannot apply DFW

We propose another Frank-Wolfe based algorithm for the robust
k-median clustering
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The proposed approach

The idea behind
Use classical Frank-Wolfe to solve

min
x∈Conv(X)

µT x +
√

xT Σx

Conv(X ) =
{

z ∈ [0, 1]n2
s.t.

Σn
i=1zn(i−1)+j = 1 ∀j ∈ {1, . . . , n},

zn(i−1)+j ≤ zn(i−1)+i∀i, j ∈ {1, . . . , n}2,

Σn
i=1zn(i−1)+i = k

}
Conv(X ): Constraints (C1), (C2), (C3) satisfied, variables not binary

Consider the feasible round of the mean of all the intermediate
solutions.
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The proposed approach

MFW: a Frank-Wolfe based algorithm to solve Prob-
lem (4)

1: x (0) ∈ Conv(X ) a random solution, ε > 0 close to zero,
K̊ a maximum number of iterations.

2: k̊ ← 1
3: stop← false
4: while k̊ ≤ K̊ and ¬stop do
5: if g(x (k̊−1))− g(x (k̊)) < ε: then
6: stop← true
7: else
8: s(k̊) ∈ argmin

y∈Conv(X)

∇g(x (k̊))T y

9: γ(k̊) ← argmin
α∈[0,1]

g(x (k̊) + α(s(k̊) − x (k̊)))

10: x (k̊+1) ← (1− γ(k̊))x (k̊) + γ(k̊)s(k̊)

11: end if
12: k̊ + +
13: end while

14: return a feasible round of µk̊−1 =
Σk̊−1

i=1 s(i)

k̊ − 1

• s(k) minimum linear ap-
proximation

• s(k) /∈ X =⇒ need to
round

• Line search step: mini-
mize g(x (k+1))

• x (k) converges in Conv(X )

• We look at s(k): return the
feasible round of the mean
of all the iterations
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• x (k) converges in Conv(X )

• We look at s(k): return the
feasible round of the mean
of all the iterations
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A feasible rounding algorithm: example of a 2-median clustering with 10
points



0.53 0 0.53 0 0 0 0 0.05 0 0.53
0 0.14 0.14 0.14 0.02 0 0.14 0.14 0 0
0 0 0 0 0 0 0 0 0 0
0 0.39 0 0.38 0.38 0.38 0 0 0.32 0.25
0 0 0 0.09 0.09 0.09 0.09 0 0 0.09
0 0 0 0.04 0.04 0.04 0 0 0.04 0
0 0 0 0 0 0 0 0 0 0

0.47 0.47 0.01 0 0.46 0.14 0.43 0.47 0.3 0.13
0 0 0.32 0.34 0 0.34 0.34 0.34 0.34 0
0 0 0 0 0 0 0 0 0 0



Sort the diagonal elements, and choose the 2 biggest elements

In reduced matrix, sort each column

Then the rest equals zero, and the rounding is done!
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Numerical setup

Setup
• We changed the number of points n for the k-median problem for k = 2

• We compared with the solutions provided by CPLEX

• Ω = 1, and for every n, 80 different (µ,Σ, x0)
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Numerical results of MFW Algorithm

Er =
g(x̂)− p∗

p∗
#{Er = 0}

n Time(s) of
CPLEX

Time(s) MFW #{Er = 0} Er

5 0.1644 5.0149 55 % 0.0555
6 0.5424 7.8 71.25 % 0.0513
7 0.8296 12.9796 48.75 % 0.0486
8 0.9948 6.9707 67.5 % 0.0186
9 1.9202 9.6168 63.75 % 0.0246
10 2.1028 16.6282 58.75 % 0.0432
11 2.1607 14.1045 70 % 0.0447
12 3.6378 19.778 23 % 0.0862
13 4.1873 17.8977 35 % 0.0694
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12 3.6378 19.778 23 % 0.0862
13 4.1873 17.8977 35 % 0.0694

The relative error is in average small (0.0186 to 0.0862)
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Numerical results of MFW Algorithm

Er =
g(x̂)− p∗

p∗
#{Er = 0}
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12 3.6378 19.778 23 % 0.0862
13 4.1873 17.8977 35 % 0.0694

The relative error equals zero in up to 70% of the cases
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Numerical results of MFW Algorithm

Er =
g(x̂)− p∗

p∗
#{Er = 0}

n Time(s) of
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9 1.9202 9.6168 63.75 % 0.0246
10 2.1028 16.6282 58.75 % 0.0432
11 2.1607 14.1045 70 % 0.0447
12 3.6378 19.778 23 % 0.0862
13 4.1873 17.8977 35 % 0.0694

CPLEX is faster but the difference in time between MFW Algorithm and
CPLEX is not very big (around 1/5 in average)
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Outline

1. Context and positioning

2. A Frank-Wolfe based heuristic approach applied on the robust shortest
path problem

3. Another Frank-Wolfe based heuristic approach applied on the robust
k-median clustering problem

4. Conclusions and perspectives
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Conclusion

• Considering the uncertainty in optimization problems is important

• The robust problem with an ellipsoidal uncertainty of a binary linear
problem in the cost function is a hard problem

• We propose a heuristic approach based on Frank-Wolfe applied on the
robust shortest path problem

• Numerical results show that the heuristic approach gives the optimal
solution

• An extension on the robust k-median clustering has been studied

• A heuristic algorithm based on Frank-Wolfe has been proposed, with a
feasible rounding algorithm

• Results show that this algorithm gives the optimal solution in most of the
cases, and that it gives close-to-optimal solutions when they are not
optimal
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Perspectives

• DFW Algorithm could be improved (better results, less processing time-
for example using the away step FW)

• More numerical results could include a study of the algorithm’s
parameters, and more tests with larger instances

• DFW is a heuristics =⇒ it has certainly some limitations =⇒ a
distance from optimality, in its worst case?

• Improve MFW Algorithm (e.g., by improving the rounding technique)

• Test MFW with different uncertainty configurations of the clusters
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Thank you for your attention
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