

Robust Discrete Optimization Under Ellipsoidal Uncertainty

Chifaa Dahik Jean-Marc Nicod, Landy Rabehasaina and Zeina Al Masry

Université de Bourgogne Franche-Comté

December, 3 2021. Workshop SCALE GDR RO Lyon

Context and positioning •OOOOOOO First heuristics

Second heuristics

Conclusions and perspectives

Need for robustness

Context

Context and positioning •OOOOOOO First heuristics

Second heuristics

Conclusions and perspectives

First heuristics

Second heuristics

Conclusions and perspectives

Context and positioning •OOOOOOO First heuristics

Second heuristics

Conclusions and perspectives

	Scenario 1	Scenario 2	Worst Scenario
$a \rightarrow b \rightarrow e$	50 min	9 min	50 min
$a \rightarrow c \rightarrow e$	21 min	23 min	23 min
$a \rightarrow d \rightarrow e$	12 min	48 min	48 min

Context and positioning OOOOOOO First heuristics

Second heuristics

Conclusions and perspectives

First heuristics

Second heuristics

Conclusions and perspectives

Need for robustness

Resulting facts

Uncertainty exists

First heuristics

Second heuristics

Conclusions and perspectives

Need for robustness

Resulting facts

Uncertainty exists Considering it is important

First heuristics

Second heuristics

Conclusions and perspectives

Need for robustness

Resulting facts

Uncertainty exists
Uncertainty exists
Considering it is important
It makes problems harder

Optimal solutions are not valid

First heuristics

Second heuristics

Conclusions and perspectives

Uncertainty definition

Definition, cause, available information

Uncertainty= epistemic situation with unknown or imperfect information

First heuristics

Second heuristics

Conclusions and perspectives

Uncertainty definition

Definition, cause, available information

Uncertainty= *epistemic situation with unknown or imperfect information* It can be caused by future events, physical measurements that are already made, or the unknown

First heuristics

Second heuristics

Conclusions and perspectives

Uncertainty definition

Definition, cause, available information

Uncertainty= epistemic situation with unknown or imperfect information It can be caused by future events, physical measurements that are already made, or the unknown

Available information or assumptions can exist: probability distribution, belonging to a set, information from the past, etc.

First heuristics

Second heuristics

Conclusions and perspectives

Uncertainty definition

Definition, cause, available information

Uncertainty= epistemic situation with unknown or imperfect information
It can be caused by future events, physical measurements that are

already made, or the unknown

Available information or assumptions can exist: probability distribution, belonging to a set, information from the past, etc.

Uncertainty in an optimization problem:

 $\min_{x\in X_d}f(x,d),$

 X_d : feasible set under the realization d.

First heuristics

Second heuristics

Conclusions and perspectives

Chosen model of uncertainty

- Different approaches exist
- The choice of the approach is made for many reasons: how close to representing the reality, how easy the problem is to solve

First heuristics

Second heuristics

Conclusions and perspectives

Chosen model of uncertainty

Different definitions of worst case based approaches

Absolute robust decision

First heuristics

Second heuristics

Conclusions and perspectives

Chosen model of uncertainty

Different definitions of worst case based approaches

Absolute robust decision

[Kouvelis et al. 2004, Buchheim and Kurtz 2018]

 $\min_{x\in X_d} f(x,d)$

$$z_A = \min_{x \in \cap_{d \in U} X_d} \max_{d \in U} f(x, d)$$

U is an uncertainty set Best in worst case, with cost=objective

First heuristics

Second heuristics

Conclusions and perspectives

Chosen model of uncertainty

Different definitions of worst case based approaches

Absolute robust decision

Robust deviation decision

First heuristics

Second heuristics

Conclusions and perspectives

Chosen model of uncertainty

Different definitions of worst case based approaches

Absolute robust decision decision

[Kouvelis et al. 2004, Buchheim and Kurtz 2018]

 $\min_{x\in X_d} f(x,d)$

$$Z_D = \min_{x \in \cap_{d \in U} X_d} \max_{d \in U} \left(f(x, d) - f(x_d^*, d) \right)$$

Best in worst case, with cost=deviation from optimal

First heuristics

Second heuristics

Conclusions and perspectives

Chosen model of uncertainty

Different definitions of worst case based approaches

Absolute robust decision

Robust deviation decision

Relative robust decision

First heuristics

Second heuristics

Conclusions and perspectives

Chosen model of uncertainty

Different definitions of worst case based approaches

 Absolute robust decision
 Robust deviation decision
 Relative robust decision

 [Kouvelis et al. 2004, Buchheim and Kurtz 2018]

$$z_R = \min_{\substack{x \in X_d \\ x \in \square_{d \in U} x_d}} \max_{\substack{d \in U}} \frac{f(x, d) - f(x_d^*, d)}{f(x_d^*, d)}$$

Best in worst case, with cost=relative deviation from optimal

First heuristics

Second heuristics

Conclusions and perspectives

Chosen model of uncertainty

Different definitions of worst case based approaches

Absolute robust decision

Robust deviation decision

Relative robust decision

First heuristics

Second heuristics

Conclusions and perspectives

Chosen model of uncertainty

Different definitions of worst case based approaches

Absolute robust decision

Robust deviation decision

Relative robust decision

Why absolute robust decision?

· Avoid to compute optimal solutions of all scenarios

First heuristics

Second heuristics

Conclusions and perspectives

Chosen model of uncertainty

Different definitions of worst case based approaches

Absolute robust decision

Robust deviation decision

Relative robust decision

Uncertainty sets

Discrete set

First heuristics

Second heuristics

Conclusions and perspectives

Chosen model of uncertainty

First heuristics

Second heuristics

Conclusions and perspectives

Chosen model of uncertainty

Absolute robust decision	Robust deviation decision	Relative robust decision
Uncertainty sets		
Discrete set	Interval set	

First heuristics

Second heuristics

Conclusions and perspectives

Chosen model of uncertainty

First heuristics

Second heuristics

Conclusions and perspectives

Chosen model of uncertainty

Absolute robust decision	Robust deviation decision	Relative robust decision
Uncertainty sets		
Discrete set	Interval set	Ellipsoidal set

First heuristics

Second heuristics

Conclusions and perspectives

Chosen model of uncertainty

First heuristics

Second heuristics

Conclusions and perspectives

Chosen model of uncertainty

Absolute robust decision	Robust deviation decision	Relative robust decision
Uncertainty sets		
Discrete set	Interval set	Ellipsoidal set

First heuristics

Second heuristics

Conclusions and perspectives

Chosen model of uncertainty

Different definitions of worst case based approaches

· Avoid the pessimism of general robust min-max optimization

ъ T,

First heuristics

Second heuristics

Conclusions and perspectives

Chosen model of uncertainty

Absolute robust decision	Robust deviation decision	Relative robust decision
Uncertainty sets		
Discrete set	Interval set	Ellipsoidal set

First heuristics

Second heuristics

Conclusions and perspectives

Chosen problem to solve

General problems:

 $\min_{x\in X_d}f(x,d)$

First heuristics

Second heuristics

Conclusions and perspectives

Chosen problem to solve

General problems:

 $\min_{x\in X_d}f(x,d)$

Consider binary linear problems with uncertainty in cost

$$\min_{x \in X} c^T x, \quad X = \{x \in \{0, 1\}^m; Ax = b\}$$

First heuristics

Second heuristics

Conclusions and perspectives

Chosen problem to solve

General problems:

 $\min_{x\in X_d}f(x,d)$

Consider binary linear problems with uncertainty in cost

$$\min_{x\in X} c^T x, \quad X = \{x \in \{0,1\}^m; Ax = b\}$$

Examples: Shortest path problem, k-median clustering problem, etc.

First heuristics

Second heuristics

Conclusions and perspectives

Complexity and existing methods

The absolute robust counterpart of binary linear problems under ellipsoidal uncertainty gives

$$\min_{x \in X} \max_{c \in U} c^T x \longrightarrow \min_{x \in X} \mu^T x + \sqrt{x^T \Sigma x} = \min_{x \in X} g(x)$$
(1)

[Ilyina 2017] $(\mu^T x + \Omega \sqrt{x^T \Sigma x} \rightarrow \mu^T x + \sqrt{x^T \Sigma x})$: replace Σ by $\Omega^2 \Sigma$)

Problem (1) is a binary non-linear problem \implies NP-hard

First heuristics

Second heuristics

Conclusions and perspectives

Complexity and existing methods

The absolute robust counterpart of binary linear problems under ellipsoidal uncertainty gives

$$\min_{x \in X} \max_{c \in U} c^T x \quad \to \min_{x \in X} \mu^T x + \sqrt{x^T \Sigma x} = \min_{x \in X} g(x) \tag{1}$$

[Ilyina 2017] $(\mu^T x + \Omega \sqrt{x^T \Sigma x} \rightarrow \mu^T x + \sqrt{x^T \Sigma x})$: replace Σ by $\Omega^2 \Sigma$)

Problem (1) is a binary non-linear problem \implies NP-hard

Methods to solve Problem (1)

Exact methods

First heuristics

Second heuristics

Conclusions and perspectives

Complexity and existing methods

The absolute robust counterpart of binary linear problems under ellipsoidal uncertainty gives

$$\min_{x \in X} \max_{c \in U} c^T x \longrightarrow \min_{x \in X} \mu^T x + \sqrt{x^T \Sigma x} = \min_{x \in X} g(x)$$
(1)

[Ilyina 2017] $(\mu^T x + \Omega \sqrt{x^T \Sigma x} \rightarrow \mu^T x + \sqrt{x^T \Sigma x})$: replace Σ by $\Omega^2 \Sigma$)

Problem (1) is a binary non-linear problem \implies NP-hard

Methods to solve Problem (1)

Exact methods

- Writing (1) as a Binary Second Order Cone Program permits us to use existing exact solvers based on Branch-and-Bound methods (e.g., CPLEX)
- Research work about exact methods are proposed :
- [llyina *et al* 2017]
- [Buchheim et al. 2017]: A Frank-Wolfe based Branch-and-bound algorithm

First heuristics

Second heuristics

Conclusions and perspectives

Complexity and existing methods

The absolute robust counterpart of binary linear problems under ellipsoidal uncertainty gives

$$\min_{x \in X} \max_{c \in U} c^T x \quad \to \min_{x \in X} \mu^T x + \sqrt{x^T \Sigma x} = \min_{x \in X} g(x) \tag{1}$$

[Ilyina 2017] $(\mu^T x + \Omega \sqrt{x^T \Sigma x} \rightarrow \mu^T x + \sqrt{x^T \Sigma x})$: replace Σ by $\Omega^2 \Sigma$)

Problem (1) is a binary non-linear problem \implies NP-hard

Methods to solve Problem (1)

Exact methods Heuristic approaches

First heuristics

Second heuristics

Conclusions and perspectives

Complexity and existing methods

The absolute robust counterpart of binary linear problems under ellipsoidal uncertainty gives

$$\min_{x \in X} \max_{c \in U} c^T x \longrightarrow \min_{x \in X} \mu^T x + \sqrt{x^T \Sigma x} = \min_{x \in X} g(x)$$
(1)

[Ilyina 2017] $(\mu^T x + \Omega \sqrt{x^T \Sigma x} \rightarrow \mu^T x + \sqrt{x^T \Sigma x})$: replace Σ by $\Omega^2 \Sigma$)

Problem (1) is a binary non-linear problem \implies NP-hard

Methods to solve Problem (1)

Exact methods

Heuristic approaches

There is no proposition of a heuristic approach

Exact methods are not scalable

 \implies Proposition of a heuristics with the idea of adapting Frank-Wolfe, this time for a heuristics

First heuristics

Second heuristics

Conclusions and perspectives

Outline

1. Context and positioning

2. A Frank-Wolfe based heuristic approach applied on the robust shortest path problem

3. Another Frank-Wolfe based heuristic approach applied on the robust ${\tt k}\mbox{-median clustering problem}$

4. Conclusions and perspectives

First heuristics

Second heuristics

Conclusions and perspectives

Outline

1. Context and positioning

2. A Frank-Wolfe based heuristic approach applied on the robust shortest path problem

3. Another Frank-Wolfe based heuristic approach applied on the robust k-median clustering problem

4. Conclusions and perspectives

First heuristics

Second heuristics

Conclusions and perspectives

Postitioning

Recall the positioning

Consider uncertainty in problems of the form

$$\min_{x \in X} c^{T} x, \quad X = \{x \in \{0, 1\}^{m}; Ax = b\}$$

First heuristics

Second heuristics

Conclusions and perspectives

Postitioning

Recall the positioning

Consider uncertainty in problems of the form

$$\min_{x \in X} c^T x, \quad X = \{x \in \{0, 1\}^m; Ax = b\}$$

The absolute robust decision under ellipsoidal uncertainty gives

$$\min_{x \in X} \max_{c \in U} c^T x \quad \rightarrow \quad \min_{x \in X} \mu^T x + \sqrt{x^T \Sigma x}$$

First heuristics

Second heuristics

Conclusions and perspectives

Postitioning

Recall the positioning

Consider uncertainty in problems of the form

$$\min_{x \in X} c^T x, \quad X = \{x \in \{0, 1\}^m; Ax = b\}$$

The absolute robust decision under ellipsoidal uncertainty gives

$$\min_{x \in X} \max_{c \in U} \mathbf{C}^T \mathbf{X} \quad \rightarrow \quad \min_{x \in X} \mu^T \mathbf{X} + \sqrt{\mathbf{X}^T \mathbf{\Sigma} \mathbf{X}}$$

The goal is to solve

$$\min_{x \in X} \mu^T x + \sqrt{x^T \Sigma x} = \min_{x \in X} g(x)$$
(2)

First heuristics

Second heuristics

Conclusions and perspectives

Postitioning

Recall the positioning

Consider uncertainty in problems of the form

$$\min_{x \in X} c^T x, \quad X = \{x \in \{0, 1\}^m; Ax = b\}$$

The absolute robust decision under ellipsoidal uncertainty gives

$$\min_{x \in X} \max_{c \in U} \mathbf{C}^T \mathbf{X} \quad \rightarrow \quad \min_{x \in X} \mu^T \mathbf{X} + \sqrt{\mathbf{X}^T \mathbf{\Sigma} \mathbf{X}}$$

🔷 The goal is to solve

$$\min_{x \in X} \mu^T x + \sqrt{x^T \Sigma x} = \min_{x \in X} g(x)$$
(2)

Since, the work is based on Frank-Wolfe, recall first the classical Frank-Wolfe algorithm

First heuristics

Second heuristics

Conclusions and perspectives

The classical Frank-Wolfe algorithm

f convex, continuously differentiable defined on a compact convex *D*. Consider convex optimization problems of the form

 $\min_{x\in D}f(x)$

Frank-Wolfe algorithm

Let $x^{(0)} \in D$ for k = 0 to K do compute $s^{(k)} := \underset{s \in D}{\operatorname{argmin}} \nabla f(x^{(k)})^T s$ update $x^{(k+1)} := (1 - \gamma^{(k)})x^{(k)} + \gamma^{(k)}s^{(k)}$ end for

[Jaggi 2013

First heuristics

Second heuristics

Conclusions and perspectives

The classical Frank-Wolfe algorithm

f convex, continuously differentiable defined on a compact convex *D*. Consider convex optimization problems of the form

 $\min_{x\in D}f(x)$

Frank-Wolfe algorithm Let $x^{(0)} \in D$

Let $x^{(k)} \in D$ for k = 0 to K do compute $s^{(k)} := \underset{s \in D}{\operatorname{argmin}} \nabla f(x^{(k)})^T s$ update $x^{(k+1)} := (1 - \gamma^{(k)})x^{(k)} + \gamma^{(k)}s^{(k)}$ end for

[Jaggi 2013

$$s^{(k)} = \underset{s \in D}{\operatorname{argmin}} [f(x^{(k)}) + \nabla f(x^{(k)})^{\mathsf{T}} (s - x^{(k)})] = \underset{s \in D}{\operatorname{argmin}} \nabla f(x^{(k)})^{\mathsf{T}} s$$

First heuristics

Second heuristics

Conclusions and perspectives

The classical Frank-Wolfe algorithm

f convex, continuously differentiable defined on a compact convex *D*. Consider convex optimization problems of the form

 $\min_{x\in D}f(x)$

Frank-Wolfe algorithm Let $x^{(0)} \in D$ for k = 0 to K do compute $s^{(k)} := \underset{s \in D}{\operatorname{argmin}} \nabla f(x^{(k)})^T s$ update $x^{(k+1)} := (1 - \gamma^{(k)})x^{(k)} + \gamma^{(k)}s^{(k)}$

Step-size

•
$$\gamma^{(k)} = \frac{2}{k+2}$$

• $\gamma^{(k)} = \operatorname*{argmin}_{\alpha \in [0,1]} f((1-\alpha)x^{(k)} + \alpha s^{(k)})$ (line search step)

First heuristics

Second heuristics

Conclusions and perspectives

The classical Frank-Wolfe algorithm

f convex, continuously differentiable defined on a compact convex *D*. Consider convex optimization problems of the form

 $\min_{x\in D}f(x)$

Limits: Assumptions of Frank-Wolfe are not valid in our case

end for

First heuristics

Second heuristics

Conclusions and perspectives

The classical Frank-Wolfe algorithm

f convex, continuously differentiable defined on a compact convex *D*. Consider convex optimization problems of the form

 $\min_{x\in D}f(x)$

Let $x^{(0)} \in D$ for k = 0 to K do compute $s^{(k)} := \underset{s \in D}{\operatorname{argmin}} \nabla f(x^{(k)})^T s$ update $x^{(k+1)} := (1 - \gamma^{(k)})x^{(k)} + \gamma^{(k)}s^{(k)}$ end for f f(x) f(x) Liansi 00121

Limits: Assumptions of Frank-Wolfe are not valid in our case
 Need for an adapted algorithm

First heuristics

Second heuristics

Conclusions and perspectives

The proposed approach

The idea behind Use classical Frank-Wolfe to solve

 $\min_{x \in \mathsf{Conv}(X)} \mu^T x + \sqrt{x^T \Sigma x}$

 $X = \{x \in \{0, 1\}^m; Ax = b\}$ Conv(X) = $\{x \in [0, 1]^m; Ax = b\}$

First heuristics

Second heuristics

Conclusions and perspectives

The proposed approach

The idea behind Use classical Frank-Wolfe to solve

 $\min_{x \in \text{Conv}(X)} \mu^T x + \sqrt{x^T \Sigma x}$ $\{0, 1\}^m; Ax = b\}$

$$X = \{x \in \{0, 1\}^{m}; Ax = b\}$$

Conv(X) = $\{x \in [0, 1]^{m}; Ax = b\}$
The solution is not feasible

1

First heuristics

Second heuristics

Conclusions and perspectives

The proposed approach

The idea behind Use classical Frank-Wolfe to solve

 $\min_{x \in \mathsf{Conv}(X)} \mu^T x + \sqrt{x^T \Sigma x}$

$$X = \{x \in \{0, 1\}^m; Ax = b\}$$

Conv(X) = $\{x \in [0, 1]^m; Ax = b\}$
The solution is not feasible
The gradient is not well defined in zero

First heuristics

Second heuristics

Conclusions and perspectives

The proposed approach

 $\min_{x \in \mathsf{Conv}(X)} \mu^T x + \sqrt{x^T \Sigma x}$

$$X = \{x \in \{0, 1\}^m; Ax = b\}$$

Conv(X) = $\{x \in [0, 1]^m; Ax = b\}$
The solution is not feasible
The gradient is not well defined in zero

Before proceeding, some assumptions are needed

First heuristics

Second heuristics

Conclusions and perspectives

The proposed approach

First some assumptions

Three assumptions are necessary to our approach

(A1) For any real-valued vector a, there exists an efficient algorithm to solve $\min_{x \in X} a^T x$

(A2) For any real-valued vector a, there exists a solution for $\min_{x \in Conv(X)} a^T x$ that belongs to X

(A3) $0_{\mathbb{R}^m}$ does not belong to X

Recall X, Conv(X)

$$X = \{x \in \{0, 1\}^m; Ax = b\}$$

Conv(X) = $\{x \in [0, 1]^m; Ax = b\}$

First heuristics

Second heuristics

Conclusions and perspectives

The proposed approach

First some assumptions

Three assumptions are necessary to our approach

(A1) For any real-valued vector a, there exists an efficient algorithm to solve $\min_{x \in X} a^T x$

(A2) For any real-valued vector a, there exists a solution for $\min_{x \in Conv(X)} a^T x$ that belongs to X

(A3) $0_{\mathbb{R}^m}$ does not belong to X

Recall X, Conv(X)

$$X = \{x \in \{0, 1\}^m; Ax = b\}$$

Conv $(X) = \{x \in [0, 1]^m; Ax = b\}$

Thanks to (A3), for all $x \in X$, the gradient of g is well defined

$$\nabla g(x) = \mu + \frac{\Sigma x}{\sqrt{x^T \Sigma x}}$$

First heuristics

Second heuristics

Conclusions and perspectives

The idea behind Use classical Frank-Wolfe to solve

$$\min_{x \in \mathsf{Conv}(X)} \mu^T x + \sqrt{x^T \Sigma x}$$

First heuristics

Second heuristics

Conclusions and perspectives

The idea behind Use classical Frank-Wolfe to solve

 $\min_{x \in \mathsf{Conv}(X)} \mu^T x + \sqrt{x^T \Sigma x}$

Consider the best intermediate solution, that is feasible thanks to the assumptions.

First heuristics

Second heuristics

Conclusions and perspectives

The proposed approach

```
DFW: a Frank-Wolfe based algorithm to solve
(2)
 1: x^{(0)} a random feasible solution, \varepsilon > 0 close to zero, K
     a maximum number of iterations.
 2: k \leftarrow 1
 3: stop \leftarrow false
 4: while k < K and \negstop do
         if g(x^{(k-1)}) - g(x^{(k)}) < \varepsilon: then
 5.
            stop \leftarrow true
 6:
 7.
        else
            s^{(k)} \in \operatorname{argmin} \nabla g(x^{(k)})^T y, with s^{(k)} \in X
 8:
                     y \in Conv(X)
            \gamma^{(k)} \leftarrow \operatorname{argmin} g(x^{(k)} + \alpha(s^{(k)} - x^{(k)}))
 g٠
                      \alpha \in [0,1]
            \mathbf{x}^{(k+1)} \leftarrow (1 - \gamma^{(k)}) \mathbf{x}^{(k)} + \gamma^{(k)} \mathbf{s}^{(k)}
10.
11:
        end if
12.
        k + +
13. end while
14: return
                    argmin
                                     g(s)
               s \in \{s^{(1)}, \dots, s^{(k-1)}\}
```


femto-st

TECHNOLOGIES

First heuristics

Second heuristics

Conclusions and perspectives

The proposed approach

DFW: a Frank-Wolfe based algorithm to solve
(2)
1:
$$x^{(0)}$$
 a random feasible solution, $\varepsilon > 0$ close to zero, K
a maximum number of iterations.
2: $k \leftarrow 1$
3: stop \leftarrow false
4: while $k \leq K$ and \neg stop do
5: if $g(x^{(k-1)}) - g(x^{(k)}) < \varepsilon$: then
6: stop \leftarrow true
7: else
8: $s^{(k)} \in \underset{\substack{v \in Con(X) \\ v \in Con(X)}}{s \in [0,1]} \nabla g(x^{(k)})^T y$, with $s^{(k)} \in X$
9: $\gamma^{(k)} \leftarrow \underset{\alpha \in [0,1]}{\operatorname{argmin}} g(x^{(k)} + \alpha(s^{(k)} - x^{(k)}))$
10: $x^{(k+1)} \leftarrow (1 - \gamma^{(k)})x^{(k)} + \gamma^{(k)}s^{(k)}$
11: end if
12: $k + +$
13: end while
14: return $\underset{s \in \{s^{(1)}, \dots, s^{(k-1)}\}}{\operatorname{argmin}} g(s)$

- *s*^(*k*) minimum linear approximation
- $s^{(k)} \in X$ thanks to Assumption (A2)

femto-st

TECHNOLOGIES

First heuristics

Second heuristics

Conclusions and perspectives

The proposed approach

DFW: a Frank-Wolfe based algorithm to solve
(2)
1:
$$x^{(0)}$$
 a random feasible solution, $\varepsilon > 0$ close to zero, K
a maximum number of iterations.
2: $k \leftarrow 1$
3: stop \leftarrow false
4: while $k \leq K$ and \neg stop do
5: if $g(x^{(k-1)}) - g(x^{(k)}) < \varepsilon$: then
6: stop \leftarrow true
7: else
8: $s^{(k)} \in \underset{y \in \text{Conv}(X)}{\operatorname{argmin}} \nabla g(x^{(k)})^T y$, with $s^{(k)} \in X$
9: $\gamma^{(k)} \leftarrow \underset{\alpha \in [0,1]}{\operatorname{argmin}} g(x^{(k)} + \alpha(s^{(k)} - x^{(k)}))$
10: $x^{(k+1)} \leftarrow (1 - \gamma^{(k)})x^{(k)} + \gamma^{(k)}s^{(k)}$
11: end if
12: $k + +$
13: end while
14: return $\underset{s \in \{s^{(1)}, \dots, s^{(k-1)}\}}{\operatorname{argmin}} g(s)$

- $s^{(k)} \in X$ thanks to Assumption (A2)
- Line search step: minimize $g(x^{(k+1)})$

14/29

First heuristics

Second heuristics

Conclusions and perspectives

The proposed approach

DFW: a Frank-Wolfe based algorithm to solve
(2)
1:
$$x^{(0)}$$
 a random feasible solution, $\varepsilon > 0$ close to zero, K
a maximum number of iterations.
2: $k \leftarrow 1$
3: stop \leftarrow false
4: while $k \leq K$ and \neg stop do
5: if $g(x^{(k-1)}) - g(x^{(k)}) < \varepsilon$: then
6: stop \leftarrow true
7: else
8: $s^{(k)} \in \underset{\substack{\varphi \in \text{Conv}(X)}{\text{solution}} \nabla g(x^{(k)})^T y$, with $s^{(k)} \in X$
9: $\gamma^{(k)} \leftarrow \underset{\substack{\alpha \in [0,1]}{\alpha \in [0,1]}}{\text{solution}} \gamma^{(k)} + \alpha(s^{(k)} - x^{(k)}))$
10: $x^{(k+1)} \leftarrow (1 - \gamma^{(k)})x^{(k)} + \gamma^{(k)}s^{(k)}$
11: end if
12: $k + +$
13: end while
14: return $\underset{s \in \{s^{(1)}, \dots, s^{(k-1)}\}}{\text{solution}} g(s)$

- $s^{(k)} \in X$ thanks to Assumption (A2)
- Line search step: minimize $g(x^{(k+1)})$
- x^(k) converges in Conv(X)

First heuristics

Second heuristics

Conclusions and perspectives

The proposed approach

DFW: a Frank-Wolfe based algorithm to solve
(2)
1:
$$x^{(0)}$$
 a random feasible solution, $\varepsilon > 0$ close to zero, K
a maximum number of iterations.
2: $k \leftarrow 1$
3: stop \leftarrow false
4: while $k \leq K$ and \neg stop do
5: if $g(x^{(k-1)}) - g(x^{(k)}) < \varepsilon$: then
6: stop \leftarrow true
7: else
8: $s^{(k)} \in \underset{y \in \text{Conv}(X)}{\operatorname{argmin}} \nabla g(x^{(k)})^T y$, with $s^{(k)} \in X$
9: $\gamma^{(k)} \leftarrow \underset{\alpha \in [0,1]}{\operatorname{argmin}} g(x^{(k)} + \alpha(s^{(k)} - x^{(k)}))$
10: $x^{(k+1)} \leftarrow (1 - \gamma^{(k)})x^{(k)} + \gamma^{(k)}s^{(k)}$
11: end if
12: $k + +$
13: end while
14: return $\underset{s \in \{s^{(1)}, \dots, s^{(k-1)}\}}{\operatorname{argmin}} g(s)$

- *s*^(*k*) minimum linear approximation
- $s^{(k)} \in X$ thanks to Assumption (A2)
- Line search step: minimize $g(x^{(k+1)})$
- x^(k) converges in Conv(X)
- We look at *s*^(*k*): return the best one of all the iterations

First heuristics

Second heuristics

Conclusions and perspectives

Numerical setup

Berlin Mitte-Center graph with 398 nodes and 871 edges with an illustration of a path from node 1 to node 294

First heuristics

Second heuristics

Conclusions and perspectives

Numerical setup

Undirected grid graph $L \times L$, source node: 1, destination node L^2

Grid graph 6 \times 6 with 36 nodes and 60 edges

Grid graph 34×34 with 1156 nodes and 2244 edges

First heuristics

Second heuristics

Conclusions and perspectives

Numerical setup

Setup

- The robust shortest path problem from node 1 to node L²
- $\Omega = 1$, (μ, Σ, x_0) random

First heuristics

Second heuristics

Conclusions and perspectives

Numerical results: behavior of the algorithm for L = 34

Denote, at each iteration k, the best solution so far as $s_{opt}^{(k)} = \operatorname{argmin}_{s^{(l)} \in \{s^{(1)}, \dots, s^{(k)}\}} g(s^{(l)})$

First heuristics

Second heuristics

Conclusions and perspectives

Numerical results

Results

• Change size of the graph

First heuristics

Second heuristics

Conclusions and perspectives

Numerical results

- Change size of the graph
- Compare with the solutions provided by CPLEX

First heuristics

Second heuristics

Conclusions and perspectives

Numerical results

- Change size of the graph
- Compare with the solutions provided by CPLEX
- For small to medium graphs, DFW gives the same solution as CPLEX

First heuristics

Second heuristics

Conclusions and perspectives

Numerical results

- Change size of the graph
- Compare with the solutions provided by CPLEX
- For small to medium graphs, DFW gives the same solution as CPLEX
- $L \ge 40$, branch-and-bound no more efficient

First heuristics

Second heuristics

Conclusions and perspectives

Numerical results

- Change size of the graph
- Compare with the solutions provided by CPLEX
- For small to medium graphs, DFW gives the same solution as CPLEX
- $L \ge 40$, branch-and-bound no more efficient
- L = 46, CPLEX stops after 2 hours and a half

First heuristics

Second heuristics

Conclusions and perspectives

Numerical results

Results

- Change size of the graph
- Compare with the solutions provided by CPLEX
- For small to medium graphs, DFW gives the same solution as CPLEX
- $L \ge 40$, branch-and-bound no more efficient
- *L* = 46, CPLEX stops after 2 hours and a half 200 iterations of DFW takes half an hour

First heuristics

Second heuristics

Conclusions and perspectives

Numerical results

Results

- Change size of the graph
- Compare with the solutions provided by CPLEX
- For small to medium graphs, DFW gives the same solution as CPLEX
- $L \ge 40$, branch-and-bound no more efficient
- L = 46, CPLEX stops after 2 hours and a half 200 iterations of DFW takes half an hour Same solution as best integer of CPLEX

First heuristics

Second heuristics

Conclusions and perspectives

Outline

1. Context and positioning

2. A Frank-Wolfe based heuristic approach applied on the robust shortest path problem

3. Another Frank-Wolfe based heuristic approach applied on the robust ${\tt k}\mbox{-median clustering problem}$

4. Conclusions and perspectives

First heuristics

Second heuristics

Conclusions and perspectives

The k-median clustering problem

Choose \Bbbk clusters to minimize the sum of the distances between the points and their cluster centers

First heuristics

Second heuristics

Conclusions and perspectives

The k-median clustering problem

Choose \Bbbk clusters to minimize the sum of the distances between the points and their cluster centers

$$\begin{split} \min_{z \in \mathbb{R}^{n \times n}} \sum_{i=1}^{n} \sum_{j=1}^{n} d(p_i, p_j) z_{ij} \\ \text{s.t.} \quad \sum_{i=1}^{n} z_{ij} = 1 \quad \forall j \in \{1, \dots, n\} \\ z_{ij} \leq y_i \quad \forall i, j \in \{1, \dots, n\}^2 \\ \sum_{i=1}^{n} y_i = k \\ z_{ij}, y_i \in \{0, 1\} \end{split}$$

In a matrix representation,

$$z_{ii} = y_i, i \in \{1,\ldots,n\}$$

$$y_i = 1 \implies p_i$$
 center

$$z_{ij} = 1 \implies p_j$$
 associated to center p_i

First heuristics

Second heuristics

Conclusions and perspectives

The k-median clustering problem

Choose \Bbbk clusters to minimize the sum of the distances between the points and their cluster centers

$$\begin{split} \min_{z \in \mathbb{R}^{n \times n}} \sum_{i=1}^{n} \sum_{j=1}^{n} d(p_i, p_j) z_{ij} \\ \text{s.t.} \quad \sum_{i=1}^{n} z_{ij} = 1 \quad \forall j \in \{1, \dots, n\} \\ z_{ij} \leq y_i \quad \forall i, j \in \{1, \dots, n\}^2 \\ \sum_{i=1}^{n} y_i = k \\ z_{ij}, y_i \in \{0, 1\} \end{split}$$

Constraint (C1):

Sum of each column = 1

Every point is associated to one and only cluster center

First heuristics

Second heuristics

Conclusions and perspectives

The k-median clustering problem

Choose \Bbbk clusters to minimize the sum of the distances between the points and their cluster centers

$$\begin{split} \min_{z \in \mathbb{R}^{n \times n}} \sum_{i=1}^{n} \sum_{j=1}^{n} d(p_i, p_j) z_{ij} \\ \text{s.t.} \quad \sum_{i=1}^{n} z_{ij} = 1 \quad \forall j \in \{1, \dots, n\} \\ z_{ij} \leq y_i \quad \forall i, j \in \{1, \dots, n\}^2 \\ \sum_{i=1}^{n} y_i = k \\ z_{ij}, y_i \in \{0, 1\} \end{split}$$

Constraint **(C2)**: Non-diagonal \leq diagonal If associate point to point \implies the second is a center

First heuristics

Second heuristics

Conclusions and perspectives

The k-median clustering problem

Choose \Bbbk clusters to minimize the sum of the distances between the points and their cluster centers

$$\min_{z \in \mathbb{R}^{n \times n}} \sum_{i=1}^{n} \sum_{j=1}^{n} d(p_i, p_j) z_{ij}$$

s.t.
$$\sum_{i=1}^{n} z_{ij} = 1 \quad \forall j \in \{1, \dots, n\}$$
$$z_{ij} \le y_i \quad \forall i, j \in \{1, \dots, n\}^2$$
$$\sum_{i=1}^{n} y_i = k$$
$$z_{ij}, y_i \in \{0, 1\}$$

Constraint (C3): Trace = kExactly k centers

First heuristics

Second heuristics

Conclusions and perspectives

Presence of uncertainty

If the distances are uncertain in the ${\bf k}\mbox{-median}$ clustering problem

First heuristics

Second heuristics

Conclusions and perspectives

Presence of uncertainty

If the distances are uncertain in the k-median clustering problem

Need for a robust solution

First heuristics

Second heuristics

Conclusions and perspectives

(3)

Presence of uncertainty

If the distances are uncertain in the k-median clustering problem
 Need for a robust solution

The k-median clustering problem can be written as

$$\min d^{T}z$$

s.t. $\sum_{i=1}^{n} Z_{n(i-1)+j} = 1 \quad \forall j \in \{1, \dots, n\}$
 $Z_{n(i-1)+j} \leq Z_{n(i-1)+i} \quad \forall i, j \in \{1, \dots, n\}^{2}$
 $\sum_{i=1}^{n} Z_{n(i-1)+i} = k$
 $z \in \{0, 1\}^{n^{2}}$

First heuristics

Second heuristics

Conclusions and perspectives

Presence of uncertainty

If the distances are uncertain in the k-median clustering problem

Need for a robust solution

The k-median clustering problem can be written as

$$\min d^{T}z$$
(3)
s.t. $\sum_{i=1}^{n} z_{n(i-1)+j} = 1 \quad \forall j \in \{1, \dots, n\}$
 $z_{n(i-1)+j} \leq z_{n(i-1)+i} \quad \forall i, j \in \{1, \dots, n\}^{2}$
 $\sum_{i=1}^{n} z_{n(i-1)+i} = k$
 $z \in \{0, 1\}^{n^{2}}$

- A flattening step
- A proof for equivalence of the definition of uncertainty between the two writings

First heuristics

Second heuristics

Conclusions and perspectives

Robust decision under ellipsoidal uncertainty

The absolute robust k-median clustering problem under ellipsoidal uncertainty is

$$\min_{z \in X} \mu^T z + \sqrt{z^T \Sigma z} \tag{4}$$

with

$$X = \{z \in \{0, 1\}^{n^2} \text{ s.t.} \\ \sum_{i=1}^n z_{n(i-1)+j} = 1 \quad \forall j \in \{1, \dots, n\}, \\ z_{n(i-1)+j} \le z_{n(i-1)+i} \forall i, j \in \{1, \dots, n\}^2, \\ \sum_{i=1}^n z_{n(i-1)+i} = k\}$$

First heuristics

Second heuristics

Conclusions and perspectives

Robust decision under ellipsoidal uncertainty

The absolute robust k-median clustering problem under ellipsoidal uncertainty is

$$\min_{z \in X} \mu^T z + \sqrt{z^T \Sigma z} \tag{4}$$

with

$$X = \{z \in \{0, 1\}^{n^2} \text{ s.t.} \\ \sum_{i=1}^{n} z_{n(i-1)+j} = 1 \quad \forall j \in \{1, \dots, n\}, \\ z_{n(i-1)+j} \le z_{n(i-1)+i} \forall i, j \in \{1, \dots, n\}^2, \\ \sum_{i=1}^{n} z_{n(i-1)+i} = k\}$$

First heuristics

Second heuristics

Conclusions and perspectives

Robust decision under ellipsoidal uncertainty

The absolute robust k-median clustering problem under ellipsoidal uncertainty is

$$\min_{z \in X} \mu^T z + \sqrt{z^T \Sigma z} \tag{4}$$

with

$$X = \{z \in \{0, 1\}^{n^2} \text{ s.t.} \\ \sum_{i=1}^{n} z_{n(i-1)+j} = 1 \quad \forall j \in \{1, \dots, n\}, \\ z_{n(i-1)+j} \le z_{n(i-1)+i} \forall i, j \in \{1, \dots, n\}^2, \\ \sum_{i=1}^{n} z_{n(i-1)+i} = k\}$$

This follows the formulation of our study

 Assumption (A2) not satisfied: no exact binarity relaxation
 cannot apply DFW

First heuristics

Second heuristics

Conclusions and perspectives

Robust decision under ellipsoidal uncertainty

The absolute robust k-median clustering problem under ellipsoidal uncertainty is

$$\min_{z \in X} \mu^T z + \sqrt{z^T \Sigma z} \tag{4}$$

with

$$X = \{z \in \{0, 1\}^{n^2} \text{ s.t.} \\ \sum_{i=1}^{n} z_{n(i-1)+j} = 1 \quad \forall j \in \{1, \dots, n\}, \\ z_{n(i-1)+j} \le z_{n(i-1)+i} \forall i, j \in \{1, \dots, n\}^2, \\ \sum_{i=1}^{n} z_{n(i-1)+i} = k\}$$

This follows the formulation of our study
 Assumption (A2) not satisfied: no exact binarity relaxation
 cannot apply DFW
 We propose another Frank-Wolfe based algorithm for the robust k-median clustering

First heuristics

Second heuristics

Conclusions and perspectives

The proposed approach

The idea behind Use classical Frank-Wolfe to solve

 $\min_{x \in \mathsf{Conv}(X)} \mu^T x + \sqrt{x^T \Sigma x}$

First heuristics

х

Second heuristics

Conclusions and perspectives

The proposed approach

The idea behind Use classical Frank-Wolfe to solve

$$\min_{\in \text{Conv}(X)} \mu^T x + \sqrt{x^T \Sigma x}$$

$$Conv(X) = \{z \in [0, 1]^{n^2} \text{ s.t.} \\ \sum_{i=1}^{n} Z_{n(i-1)+j} = 1 \quad \forall j \in \{1, \dots, n\}, \\ Z_{n(i-1)+j} \le Z_{n(i-1)+i} \forall i, j \in \{1, \dots, n\}^2, \\ \sum_{i=1}^{n} Z_{n(i-1)+i} = k\}$$

Conv(X): Constraints (C1), (C2), (C3) satisfied, variables not binary

First heuristics

х

Second heuristics

Conclusions and perspectives

The proposed approach

The idea behind Use classical Frank-Wolfe to solve

$$\min_{\in \mathsf{Conv}(X)} \mu^T x + \sqrt{x^T \Sigma x}$$

$$Conv(X) = \{z \in [0, 1]^{n^2} \text{ s.t.} \\ \sum_{i=1}^{n} Z_{n(i-1)+j} = 1 \quad \forall j \in \{1, \dots, n\}, \\ Z_{n(i-1)+j} \le Z_{n(i-1)+i} \forall i, j \in \{1, \dots, n\}^2, \\ \sum_{i=1}^{n} Z_{n(i-1)+i} = k\}$$

Conv(X): Constraints (C1), (C2), (C3) satisfied, variables not binary Consider the feasible round of the mean of all the intermediate solutions.

First heuristics

Second heuristics

Conclusions and perspectives

The proposed approach

MFW: a Frank-Wolfe based algorithm to solve Problem $\left(4\right)$

1: $x^{(0)} \in \text{Conv}(X)$ a random solution, $\varepsilon > 0$ close to zero, K a maximum number of iterations. 2: $\mathring{k} \leftarrow 1$ 3: stop \leftarrow false 4: while $\dot{k} < \dot{K}$ and \neg stop do if $q(x^{(\hat{k}-1)}) - q(x^{(\hat{k})}) < \varepsilon$: then 5: stop \leftarrow true 6: else 7: $s^{(\hat{k})} \in \operatorname{argmin} \nabla g(x^{(\hat{k})})^T y$ 8: $y \in Conv(X)$ $\gamma^{(\hat{k})} \leftarrow \operatorname{argmin} g(x^{(\hat{k})} + \alpha(s^{(\hat{k})} - x^{(\hat{k})}))$ 9: $\alpha \in [0,1]$ $\boldsymbol{x}^{(\hat{k}+1)} \leftarrow (1 - \gamma^{(\hat{k})}) \boldsymbol{x}^{(\hat{k})} + \gamma^{(\hat{k})} \boldsymbol{s}^{(\hat{k})}$ 10: end if 11: k + +12. 13: end while 14: return a feasible round of $\mu_{k-1} = \frac{\sum_{i=1}^{k-1} \mathbf{s}^{(i)}}{k}$

First heuristics

Second heuristics

Conclusions and perspectives

The proposed approach

MFW: a Frank-Wolfe based algorithm to solve Problem $\left(4\right)$

1: $x^{(0)} \in \text{Conv}(X)$ a random solution, $\varepsilon > 0$ close to zero, \mathring{K} a maximum number of iterations.

- 2: *k* ← 1
- $\textbf{3: stop} \leftarrow \textbf{false}$
- 4: while $\mathring{k} \leq \mathring{K}$ and \neg stop **do**

5: if
$$g(x^{(\hat{k}-1)}) - g(x^{(\hat{k})}) < \varepsilon$$
: then

- 6: $stop \leftarrow true$
- 7: else

8:
$$s^{(k)} \in \underset{y \in \text{Conv}(X)}{\operatorname{argmin}} \nabla g(x^{(k)})^T y$$

9:
$$\gamma^{(\hat{k})} \leftarrow \underset{\alpha \in [0,1]}{\operatorname{argmin}} g(x^{(\hat{k})} + \alpha(s^{(\hat{k})} - x^{(\hat{k})}))$$

10:
$$x^{(\hat{k}+1)} \leftarrow (1 - \gamma^{(\hat{k})}) x^{(\hat{k})} + \gamma^{(\hat{k})} s^{(\hat{k})}$$

- 11: end if
- 12: *k*++
- 13: end while

14: return a feasible round of
$$\mu_{k-1} = \frac{\sum_{i=1}^{k-1} s^{(i)}}{k-1}$$

• $s^{(k)} \notin X \implies$ need to round

First heuristics

Second heuristics

Conclusions and perspectives

The proposed approach

MFW: a Frank-Wolfe based algorithm to solve Problem $\left(4\right)$

- 1: $x^{(0)} \in \text{Conv}(X)$ a random solution, $\varepsilon > 0$ close to zero, \mathring{K} a maximum number of iterations. 2: $\mathring{k} \leftarrow 1$ 3: stop \leftarrow false 4: while $\mathring{k} \leq \mathring{K}$ and \neg stop do 5: if $g(x^{(\check{k}-1)}) - g(x^{(\check{k})}) < \varepsilon$: then 6: stop \leftarrow true 7: else 8: $s^{(\check{k})} \in \operatorname{argmin} \nabla g(x^{(\check{k})})^T y$
- 9: $\gamma^{(\hat{k})} \leftarrow \underset{\alpha \in [0,1]}{\operatorname{argmin}} g(x^{(\hat{k})} + \alpha(s^{(\hat{k})} x^{(\hat{k})}))$
- 10: $x^{(\hat{k}+1)} \leftarrow (1-\gamma^{(\hat{k})})x^{(\hat{k})} + \gamma^{(\hat{k})}s^{(\hat{k})}$
- 11: end if
- 12: *k*++
- 13: end while
- 14: return a feasible round of $\mu_{\vec{k}-1} = \frac{\sum_{i=1}^{k-1} s^{(i)}}{\vec{k}-1}$

- $s^{(k)} \notin X \implies$ need to round
- Line search step: minimize $g(x^{(k+1)})$

First heuristics

8 . . .

Second heuristics 0000000000

Conclusions and perspectives

The proposed approach

MFW: a Frank-Wolfe based algorithm to solve Problem (4)

- 1: $x^{(0)} \in \text{Conv}(X)$ a random solution, $\varepsilon > 0$ close to zero, \mathring{K} a maximum number of iterations. 2: $\mathring{k} \leftarrow 1$ 3: stop \leftarrow false 4: while $\dot{k} \leq \dot{K}$ and \neg stop **do** if $q(x^{(k-1)}) - q(x^{(k)}) < \varepsilon$: then 5:
- 6: stop \leftarrow true
- else 7:

8:
$$\mathbf{s}^{(k)} \in \underset{y \in \text{Conv}(X)}{\operatorname{argmin}} \nabla g(\mathbf{x}^{(k)})^T \mathbf{y}$$

9: $\gamma^{(\hat{k})} \leftarrow \underset{x \in \text{argmin}}{\operatorname{argmin}} g(\mathbf{x}^{(\hat{k})} + \alpha(\mathbf{s}^{(\hat{k})} - \mathbf{x}^{(\hat{k})}))$

9:
$$\gamma^{(k)} \leftarrow \underset{\alpha \in [0,1]}{\operatorname{argmin}} g(X^{(k)} + \alpha(S^{(k)} - X^{(k)})$$

0: $X^{(k+1)} \leftarrow (1 - \gamma^{(k)}) X^{(k)} + \gamma^{(k)} S^{(k)}$

- 10:
- end if 11:
- k + +12.
- 13: end while

14: return a feasible round of
$$\mu_{k-1} = rac{\sum_{i=1}^{k-1} s^{(i)}}{k-1}$$

- $s^{(k)} \notin X \implies$ need to round
- Line search step: minimize $g(x^{(k+1)})$
- $x^{(k)}$ converges in Conv(X)

First heuristics

Second heuristics

Conclusions and perspectives

The proposed approach

MFW: a Frank-Wolfe based algorithm to solve Problem $\left(4\right)$

- 1: $x^{(0)} \in \text{Conv}(X)$ a random solution, $\varepsilon > 0$ close to zero, \mathring{K} a maximum number of iterations. 2: $\mathring{k} \leftarrow 1$
- $\textbf{3: stop} \leftarrow \textbf{false}$
- 4: while $\mathring{k} \leq \mathring{K}$ and \neg stop **do**
- 5: if $g(x^{(\hat{k}-1)}) g(x^{(\hat{k})}) < \varepsilon$: then
- 6: $stop \leftarrow true$
- 7: else

8:
$$s^{(k)} \in \underset{y \in \text{Conv}(X)}{\operatorname{argmin}} \nabla g(x^{(k)})^T y$$

9:
$$\gamma^{(\hat{k})} \leftarrow \underset{\alpha \in [0,1]}{\operatorname{argmin}} g(x^{(\hat{k})} + \alpha(s^{(\hat{k})} - x^{(\hat{k})})$$

- 10: $x^{(\tilde{k}+1)} \leftarrow (1 \gamma^{(\tilde{k})}) x^{(\tilde{k})} + \gamma^{(\tilde{k})} s^{(\tilde{k})}$
- 11: end if
- 12: *k*++
- 13: end while
- 14: return a feasible round of $\mu_{\hat{k}-1} = \frac{\sum_{i=1}^{\hat{k}-1} s^{(i)}}{\hat{k}-1}$

- $s^{(k)} \notin X \implies$ need to round
- Line search step: minimize $g(x^{(k+1)})$
- x^(k) converges in Conv(X)
- We look at *s*^(*k*): return the feasible round of the mean of all the iterations

Context ar	nd	positioning
000000	0	0

Second heuristics

Conclusions and perspectives

A feasible rounding algorithm: example of a 2-median clustering with 10 points

Γ	0.53	0	0.53	0	0	0	0	0.05	0	0.53
	0	0.14	0.14	0.14	0.02	0	0.14	0.14	0	0
l	0	0	0	0	0	0	0	0	0	0
	0	0.39	0	0.38	0.38	0.38	0	0	0.32	0.25
	0	0	0	0.09	0.09	0.09	0.09	0	0	0.09
	0	0	0	0.04	0.04	0.04	0	0	0.04	0
	0	0	0	0	0	0	0	0	0	0
	0.47	0.47	0.01	0	0.46	0.14	0.43	0.47	0.3	0.13
ł	0	0	0.32	0.34	0	0.34	0.34	0.34	0.34	0
L	0	0	0	0	0	0	0	0	0	0

Context a	nd	positioning
000000	00	0

Second heuristics

Conclusions and perspectives

A feasible rounding algorithm: example of a 2-median clustering with 10 points

۲ 0	.53	0	0.53	0	0	0	0	0.05	0	0.53	1	۲ 1							0		-	1
	0	0.14	0.14	0.14	0.02	0	0.14	0.14	0	0		0	0						0			
	0	0	0	0	0	0	0	0	0	0		0		0					0			
	0	0.39	0	0.38	0.38	0.38	0	0	0.32	0.25		0			0				0			
	0	0	0	0.09	0.09	0.09	0.09	0	0	0.09		0				0			0			
	0	0	0	0.04	0.04	0.04	0	0	0.04	0	$ \rightarrow$	0					0		0			
	0	0	0	0	0	0	0	0	0	0		0						0	0			
0	.47	0.47	0.01	0	0.46	0.14	0.43	0.47	0.3	0.13		0							1			
	0	0	0.32	0.34	0	0.34	0.34	0.34	0.34	0		0							0	0		
L	0	0	0	0	0	0	0	0	0	0		LΟ							0		0	

Sort the diagonal elements, and choose the 2 biggest elements

Context and	positioning
0000000	0

Second heuristics

Conclusions and perspectives

A feasible rounding algorithm: example of a 2-median clustering with 10 points

Γ	0.53	0	0.53	0	0	0	0	0.05	0	0.53	1	۲ 1	0	1	0	0	0	0	0	0	17	I
	0	0.14	0.14	0.14	0.02	0	0.14	0.14	0	0		0	0						0			İ
	0	0	0	0	0	0	0	0	0	0	1	0		0					0			ĺ
	0	0.39	0	0.38	0.38	0.38	0	0	0.32	0.25		0			0				0			ĺ
	0	0	0	0.09	0.09	0.09	0.09	0	0	0.09		0				0			0		1	ĺ
	0	0	0	0.04	0.04	0.04	0	0	0.04	0	$ \rightarrow$	0					0		0		ļ	ĺ
	0	0	0	0	0	0	0	0	0	0	ļ	0						0	0		ļ	ĺ
	0.47	0.47	0.01	0	0.46	0.14	0.43	0.47	0.3	0.13		0	1	0	1	1	1	1	1	1	0	ĺ
	0	0	0.32	0.34	0	0.34	0.34	0.34	0.34	0		0							0	0		ĺ
L	0	0	0	0	0	0	0	0	0	0]	LΟ							0		0	l

Sort the diagonal elements, and choose the 2 biggest elements

In reduced matrix, sort each column

Context and	l positioning
000000	00

Second heuristics

Conclusions and perspectives

A feasible rounding algorithm: example of a 2-median clustering with 10 points

Γ Ο	.53	0	0.53	0	0	0	0	0.05	0	0.53 -	1	Γ1	0	1	0	0	0	0	0	0	1]
	0	0.14	0.14	0.14	0.02	0	0.14	0.14	0	0		0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0
	0	0.39	0	0.38	0.38	0.38	0	0	0.32	0.25		0	0	0	0	0	0	0	0	0	0
	0	0	0	0.09	0.09	0.09	0.09	0	0	0.09		0	0	0	0	0	0	0	0	0	0
	0	0	0	0.04	0.04	0.04	0	0	0.04	0		0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0
0	.47	0.47	0.01	0	0.46	0.14	0.43	0.47	0.3	0.13		0	1	0	1	1	1	1	1	1	0
	0	0	0.32	0.34	0	0.34	0.34	0.34	0.34	0		0	0	0	0	0	0	0	0	0	0
L	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0

Sort the diagonal elements, and choose the 2 biggest elements

In reduced matrix, sort each column

Then the rest equals zero, and the rounding is done!

First heuristics

Second heuristics

Conclusions and perspectives

Numerical setup

Setup

- We changed the number of points *n* for the *k*-median problem for k = 2
- We compared with the solutions provided by CPLEX
- $\Omega = 1$, and for every *n*, 80 different (μ , Σ , x_0)

First heuristics

Second heuristics

Conclusions and perspectives

Numerical results of MFW Algorithm

$$E_r = \frac{g(\hat{x}) - p^*}{p^*} \qquad \#\{E_r = 0\}$$

n	Time(s) of CPLEX	Time(s) MFW	$\#\{E_r=0\}$	<u>E</u> r
5	0.1644	5.0149	55 %	0.0555
6	0.5424	7.8	71.25 %	0.0513
7	0.8296	12.9796	48.75 %	0.0486
8	0.9948	6.9707	67.5 %	0.0186
9	1.9202	9.6168	63.75 %	0.0246
10	2.1028	16.6282	58.75 %	0.0432
11	2.1607	14.1045	70 %	0.0447
12	3.6378	19.778	23 %	0.0862
13	4.1873	17.8977	35 %	0.0694

First heuristics

Second heuristics

Conclusions and perspectives

Numerical results of MFW Algorithm

$$E_r = \frac{g(\hat{x}) - p^*}{p^*} \qquad \#\{E_r = 0\}$$

n	Time(s) of	Time(s) MFW	$\#\{E_r=0\}$	<u>E</u> r
	CPLEX			
5	0.1644	5.0149	55 %	0.0555
6	0.5424	7.8	71.25 %	0.0513
7	0.8296	12.9796	48.75 %	0.0486
8	0.9948	6.9707	67.5 %	0.0186
9	1.9202	9.6168	63.75 %	0.0246
10	2.1028	16.6282	58.75 %	0.0432
11	2.1607	14.1045	70 %	0.0447
12	3.6378	19.778	23 %	0.0862
13	4.1873	17.8977	35 %	0.0694

The relative error is in average small (0.0186 to 0.0862)

First heuristics

Second heuristics

Conclusions and perspectives

Numerical results of MFW Algorithm

$$E_r = \frac{g(\hat{x}) - p^*}{p^*} \qquad \#\{E_r = 0\}$$

n	Time(s) of	Time(s) MFW	$\#\{E_r=0\}$	<u>E</u> r
	CPLEX			
5	0.1644	5.0149	55 %	0.0555
6	0.5424	7.8	71.25 %	0.0513
7	0.8296	12.9796	48.75 %	0.0486
8	0.9948	6.9707	67.5 %	0.0186
9	1.9202	9.6168	63.75 %	0.0246
10	2.1028	16.6282	58.75 %	0.0432
11	2.1607	14.1045	70 %	0.0447
12	3.6378	19.778	23 %	0.0862
13	4.1873	17.8977	35 %	0.0694

The relative error equals zero in up to 70% of the cases

First heuristics

Second heuristics

Conclusions and perspectives

Numerical results of MFW Algorithm

$$E_r = \frac{g(\hat{x}) - p^*}{p^*} \qquad \#\{E_r = 0\}$$

n	Time(s) of	Time(s) MFW	$\#\{E_r = 0\}$	<u>E</u> r
	CPLEX			
5	0.1644	5.0149	55 %	0.0555
6	0.5424	7.8	71.25 %	0.0513
7	0.8296	12.9796	48.75 %	0.0486
8	0.9948	6.9707	67.5 %	0.0186
9	1.9202	9.6168	63.75 %	0.0246
10	2.1028	16.6282	58.75 %	0.0432
11	2.1607	14.1045	70 %	0.0447
12	3.6378	19.778	23 %	0.0862
13	4.1873	17.8977	35 %	0.0694

CPLEX is faster but the difference in time between MFW Algorithm and CPLEX is not very big (around 1/5 in average)

First heuristics

Second heuristics

Conclusions and perspectives

Outline

1. Context and positioning

2. A Frank-Wolfe based heuristic approach applied on the robust shortest path problem

3. Another Frank-Wolfe based heuristic approach applied on the robust k-median clustering problem

4. Conclusions and perspectives

First heuristics

Second heuristics

Conclusions and perspectives

Conclusion

· Considering the uncertainty in optimization problems is important

First heuristics

Second heuristics

Conclusions and perspectives

Conclusion

- Considering the uncertainty in optimization problems is important
- The robust problem with an ellipsoidal uncertainty of a binary linear problem in the cost function is a hard problem

First heuristics

Second heuristics

Conclusions and perspectives

- Considering the uncertainty in optimization problems is important
- The robust problem with an ellipsoidal uncertainty of a binary linear problem in the cost function is a hard problem
- We propose a heuristic approach based on Frank-Wolfe applied on the robust shortest path problem

First heuristics

Second heuristics

Conclusions and perspectives

- Considering the uncertainty in optimization problems is important
- The robust problem with an ellipsoidal uncertainty of a binary linear problem in the cost function is a hard problem
- We propose a heuristic approach based on Frank-Wolfe applied on the robust shortest path problem
- Numerical results show that the heuristic approach gives the optimal solution

First heuristics

Second heuristics

Conclusions and perspectives

- Considering the uncertainty in optimization problems is important
- The robust problem with an ellipsoidal uncertainty of a binary linear problem in the cost function is a hard problem
- We propose a heuristic approach based on Frank-Wolfe applied on the robust shortest path problem
- Numerical results show that the heuristic approach gives the optimal solution
- An extension on the robust k-median clustering has been studied

First heuristics

Second heuristics

Conclusions and perspectives

- Considering the uncertainty in optimization problems is important
- The robust problem with an ellipsoidal uncertainty of a binary linear problem in the cost function is a hard problem
- We propose a heuristic approach based on Frank-Wolfe applied on the robust shortest path problem
- Numerical results show that the heuristic approach gives the optimal solution
- An extension on the robust k-median clustering has been studied
- A heuristic algorithm based on Frank-Wolfe has been proposed, with a feasible rounding algorithm

First heuristics

Second heuristics

Conclusions and perspectives

- Considering the uncertainty in optimization problems is important
- The robust problem with an ellipsoidal uncertainty of a binary linear problem in the cost function is a hard problem
- We propose a heuristic approach based on Frank-Wolfe applied on the robust shortest path problem
- Numerical results show that the heuristic approach gives the optimal solution
- An extension on the robust k-median clustering has been studied
- A heuristic algorithm based on Frank-Wolfe has been proposed, with a feasible rounding algorithm
- Results show that this algorithm gives the optimal solution in most of the cases, and that it gives close-to-optimal solutions when they are not optimal

First heuristics

Second heuristics

Conclusions and perspectives

Perspectives

• DFW Algorithm could be improved (better results, less processing timefor example using the away step FW)

First heuristics

Second heuristics

Conclusions and perspectives

- DFW Algorithm could be improved (better results, less processing timefor example using the away step FW)
- More numerical results could include a study of the algorithm's parameters, and more tests with larger instances

First heuristics

Second heuristics

Conclusions and perspectives

- DFW Algorithm could be improved (better results, less processing timefor example using the away step FW)
- More numerical results could include a study of the algorithm's parameters, and more tests with larger instances
- DFW is a heuristics ⇒ it has certainly some limitations ⇒ a distance from optimality, in its worst case?

First heuristics

Second heuristics

Conclusions and perspectives

- DFW Algorithm could be improved (better results, less processing timefor example using the away step FW)
- More numerical results could include a study of the algorithm's parameters, and more tests with larger instances
- DFW is a heuristics ⇒ it has certainly some limitations ⇒ a distance from optimality, in its worst case?
- Improve MFW Algorithm (e.g., by improving the rounding technique)

First heuristics

Second heuristics

Conclusions and perspectives

- DFW Algorithm could be improved (better results, less processing timefor example using the away step FW)
- More numerical results could include a study of the algorithm's parameters, and more tests with larger instances
- DFW is a heuristics ⇒ it has certainly some limitations ⇒ a distance from optimality, in its worst case?
- Improve MFW Algorithm (e.g., by improving the rounding technique)
- Test MFW with different uncertainty configurations of the clusters

First heuristics

Second heuristics

Conclusions and perspectives

Thank you for your attention

