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Introduction

Applicative context
Schedule a stream of requests T1,T2, . . . in
key-value stores in order to optimize the response
time of each request.

• Each server M1,M2, . . . holds a data partition.
• Each value is replicated on different locations.
• Each request holds a key, looking for the

associated value.

Data partitions
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Replicas of M2
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Introduction

Constraints

• Only a subset of servers can execute a given request (processing set restriction).

• Requests arrive over time (online model).
• Neither preemption nor simultaneous execution are allowed.

Objective
Minimize the maximum flow time Fmax = max Fi (Fi is the difference between the release time ri and
the completion time Ci of request i).
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Processing Set Structures and Related Bounds

General
The processing sets exhibit no particular structure.

M1 M2 M3 M4 M5 M6

T1 1 1 1 1 1 1

T2 0 1 0 1 0 1

T3 0 0 1 0 1 1

T4 1 1 0 1 1 0

T5 0 0 0 0 0 1

Lower bound: Ω(m) [Anand et al., 2017]
(m is the number of machines)

Can we do better if processing sets are
structured?
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Processing Set Structures and Related Bounds

t t + m

i
i ′

t1 t2 t3 t4

1
2
3

Proof sketch.

1. Define a block of unit tasks on machines i , i ′:
• 1 critical task (in red) released at t.

• A set of filling tasks (in blue) released at
each time unit t, . . . , t + m − 1, and feasible
on only one machine.

• 1 final task released at t + m, and feasible
only on the machine that executed the
critical task.

2. Compose blocks to accumulate delay.
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Processing Set Structures and Related Bounds

Nested
Two different processing sets are either nested or disjoint.

M1 M2 M3 M4 M5 M6

T1 1 1 1 1 1 1

T2 1 1 1 0 0 0

T3 0 0 0 0 1 1

T4 1 1 0 0 0 0

T5 0 0 0 0 1 0

Lower bound: 1
3 blog2(m) + 2c

A. Dugois Bounding the Flow Time with Processing Sets December 3, 2021 10 / 25



Processing Set Structures and Related Bounds

Nested
Two different processing sets are either nested or disjoint.

M1 M2 M3 M4 M5 M6

T1 1 1 1 1 1 1

T2 1 1 1 0 0 0

T3 0 0 0 0 1 1

T4 1 1 0 0 0 0

T5 0 0 0 0 1 0

Lower bound: 1
3 blog2(m) + 2c

A. Dugois Bounding the Flow Time with Processing Sets December 3, 2021 10 / 25



Processing Set Structures and Related Bounds

. . .

t t + F

i
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i + s
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Proof sketch.

1. Let F = log(m) + 2.

2. Define a block of tasks on machines
i , . . . , i + s:
• s critical tasks (in red) released

at time t.

• A set of filling tasks (in blue)
released at each time unit
t, . . . , t + F − 1, and feasible on
only one machine.

3. Compose blocks to accumulate delay,
by choosing the next subinterval that
contains the most uncompleted blue
tasks.
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Processing Set Structures and Related Bounds

Inclusive
Two different processing sets must be nested.

M1 M2 M3 M4 M5 M6

T1 1 1 1 1 1 1

T2 1 1 1 1 1 0

T3 0 1 1 1 0 0

T4 0 1 1 0 0 0

T5 0 0 1 0 0 0

Immediate Dispatch (i.d.)
Each task is definitely scheduled as soon as it
enters in the system.

Lower bound (i.d.): blog2(m) + 1c

A. Dugois Bounding the Flow Time with Processing Sets December 3, 2021 12 / 25



Processing Set Structures and Related Bounds

Inclusive
Two different processing sets must be nested.

M1 M2 M3 M4 M5 M6

T1 1 1 1 1 1 1

T2 1 1 1 1 1 0

T3 0 1 1 1 0 0

T4 0 1 1 0 0 0

T5 0 0 1 0 0 0

Immediate Dispatch (i.d.)
Each task is definitely scheduled as soon as it
enters in the system.

Lower bound (i.d.): blog2(m) + 1c

A. Dugois Bounding the Flow Time with Processing Sets December 3, 2021 12 / 25



Processing Set Structures and Related Bounds

Inclusive
Two different processing sets must be nested.

M1 M2 M3 M4 M5 M6

T1 1 1 1 1 1 1

T2 1 1 1 1 1 0

T3 0 1 1 1 0 0

T4 0 1 1 0 0 0

T5 0 0 1 0 0 0

Immediate Dispatch (i.d.)
Each task is definitely scheduled as soon as it
enters in the system.

Lower bound (i.d.): blog2(m) + 1c

A. Dugois Bounding the Flow Time with Processing Sets December 3, 2021 12 / 25



Processing Set Structures and Related Bounds

Constant size
Each processing set has the same size k.

M1 M2 M3 M4 M5 M6

T1 1 0 1 1 0 0

T2 1 1 1 0 0 0

T3 0 1 0 1 0 1

T4 0 1 1 0 1 0

T5 1 0 1 0 0 1

Immediate Dispatch (i.d.)
Each task is definitely scheduled as soon as it
enters in the system.

Lower bound (i.d.): blogk(m)c
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Processing Set Structures and Related Bounds

Full replication
No processing set restriction.

M1 M2 M3 M4 M5 M6

T1 1 1 1 1 1 1

T2 1 1 1 1 1 1

T3 1 1 1 1 1 1

T4 1 1 1 1 1 1

T5 1 1 1 1 1 1

Earliest Finish Time (EFT)
When a task arrives in the system, schedule it on
an eligible machine such that its completion time is
minimized.

(3− 2/m)-competitive [Bender et al., 1998]
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Processing Set Structures and Related Bounds

Disjoint
Two different processing sets are either equal or disjoint.

M1 M2 M3 M4 M5 M6

T1 1 1 0 0 0 0

T2 1 1 0 0 0 0

T3 0 0 1 1 1 0

T4 0 0 1 1 1 0

T5 0 0 0 0 0 1

EFT is (3− 2/max |Mi |)-competitive
(|Mi | is the size of processing set of task i)

Proof sketch.
1. Use the disjoint processing sets to define

subinstances of the problem.
2. Apply EFT in parallel on each subinstance.
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Processing Set Structures and Related Bounds

Interval of constant size
Each processing set is a contiguous interval of size k.

M1 M2 M3 M4 M5 M6

T1 1 1 1 0 0 0

T2 0 1 1 1 0 0

T3 0 0 0 1 1 1

T4 0 0 1 1 1 0

T5 0 1 1 1 0 0

Very common in key-value stores.

Lower bound (EFT): m − k + 1
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Processing Set Structures and Related Bounds

1
2
3 4

t = 0

M4
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M1

1
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3
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t = 1
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2
3 4

t = 2

M4

M3

M2

M1

1
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3
4

t = 3

1 2

3
4

t = 4

M4

M3

M2

M1

1
2

3
4

t = 5

Proof sketch.

1. m tasks are released in-order at each
time unit:
• m − k tasks, feasible only on

their own interval;
• k tasks, feasible only on the first

interval.

2. Show that the delay profile converges
to a stable profile:

2.1 While the stable profile is not
reached, the total delay is strictly
increasing with time.

2.2 At each time, either the stable
profile is not reached, or there is
a delay larger than m − k.
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Maximum Load under Biased Popularity

• Unit tasks arrive in the system according to a Poisson
process of parameter λ.

• No replication at the beginning.
• Each machine has a non-uniform probability to hold the

data needed by a task.

Load of a machine j
Average number of tasks sent on j at each time unit:

Load of j = λ · Prob(choosing j)
1 2 3 4 5 60

0.5

1

1.5

Machine j

Lo
ad

of
j
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Maximum Load under Biased Popularity

What is the theoretical maximum load λ
one can achieve when data are replicated?

• Overlapping intervals: key-value stores.
• Disjoint intervals: good competitive ratio.

M1 M2 M3 M4 M5 M6

1 2 3 4 5 6

1
2

3

4
55
66

1
2
3

4
5
6

No replication

Overlapping

Disjoint
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Maximum Load under Biased Popularity
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distribution with parameter s.

• 15 machines.
• Interval size k ranges from 1 to 15.
• Maximization of load λ is solved

with a Linear Program.
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Maximum Load under Biased Popularity
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• Ratio between overlapping and disjoint cases.

• Load up to 50% higher with overlapping intervals.
• Load up to 35% higher with overlapping intervals for

common parameters in key-value stores (3 replicas and
moderate bias).
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Conclusion

• Competitive ratios often increase with the number of machines m, even with regular
structures in processing sets.

• EFT has a strong guarantee for disjoint processing sets (3− 2/k) but suffers from
overlapping intervals (lower bound: m − k + 1).
• However, overlapping intervals enable a theoretical load up to 50% higher than disjoint
intervals when popularity biases are introduced.
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