
Efficient scheduling of DAGs under bounded
memory

Loris Marchal
Joint work with Bertrand Simon & Frédéric Vivien

CNRS and University of Lyon

Journée Mao — Besançon 2019



Modeling scientific applications as task graphs

I Scientific applications divided into
rather independent modules (tasks)

I Tasks linked through data
dependencies

I Directed Acyclic Graph of tasks

Multifrontal sparse matrix factorization
over runtimes

I Task graph: tree (with
dependencies towards the root)

I Large temporary data

I Memory becomes a bottleneck

I Schedule trees with limited memory



Task graph scheduling and memory

I Consider a simple task graph

I Tasks have durations and memory demands
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Going back to sequential processing

I Temporary data require memory

I Scheduling influences the peak memory
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Known results on sequential memory-aware scheduling:

I Optimal algorithm for trees [Liu, 1897], SP-graphs [Kayaaslan
et al., 2018]

I General graphs with unit size weights: pebble game [Sethi and
Ullman, 1973], PSPACE complete [Gilbert et al., 1980]
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Today’s focus

I Dynamic scheduling of general graphs:

I On shared-memory platforms:

memory

Objective: limit memory consumption while allowing parallelism
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Memory model

Task graphs with:
I Vertex weights (wi ): task (estimated) durations
I Edge weights (mi ,j): data sizes

Simple memory model: at the beginning of a task
I Inputs are freed (instantaneously)
I Outputs are allocated

At the end of a task: outputs stay in memory
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Memory model

Task graphs with:
I Vertex weights (wi ): task (estimated) durations
I Edge weights (mi ,j): data sizes

Simple memory model: at the beginning of a task
I Inputs are freed (instantaneously)
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Emulation of other memory behaviours:

I Inputs + outputs allocated during task: duplicate nodes

I Shared data: output data of A used for both B and C :

A

B

C

A1

B

C

A2



Computing the maximum memory peak

Topological cut: (S ,T ) with:

I S include the source node, T include the target node

I No edge from T to S

I Weight of the cut = weight of all edges from S to T
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Any topological cut corresponds to a possible state when all node
in S are completed or being processed.

Two equivalent questions (in our model):

I What is the maximum memory of any parallel execution?

I What is the topological cut with maximum weight?



Computing the maximum topological cut

Literature:

I Lots of studies of various cuts in non-directed graphs
([Diaz,2000] on Graph Layout Problems)

I Minimum cut is polynomial on both directed/non-directed
graphs

I Maximum cut NP-complete on both directed/non-directed
graphs ([Karp 1972] for non-directed, [Lampis 2011] for
directed ones)

I Not much for topological cuts

Theorem.

Computing the maximum topological cut of a DAG can be done in
polynomial time.



Maximum topological cut – using LP

I Consider one classical LP formulation for finding a minimum
cut:

min
∑

(i ,j)∈E

mi ,jdi ,j

∀(i , j) ∈ E , di ,j ≥ pi − pj

∀(i , j) ∈ E , di ,j ≥ 0

ps = 1, pt = 0

I Integer solution ⇔ topological cut

I Then change the optimization direction (min → max)

I Draw w uniformly in ]0, 1[, define the cut such that
Sw = {i | pi > w}, Tw = {i | pi ≤ w}

I Expected cost of this cut = M∗ (opt. rational solution)

I All cuts with random w have the same cost M∗
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Maximum topological cut – direct algorithm

I Dual problem: Min-Flow (larger than all edge weights)

I Idea: use an optimal algorithm for Max-Flow

Algorithm sketch

1. Build a large flow F on the graph G

2. Consider Gdiff with edge weights
Fi ,j −mi ,j

3. Compute a maximum flow maxdiff in
Gdiff

4. F −maxdiff is a minimum flow in G

5. Residual graph → maximum
topological cut

mi ,j

Fi ,j

diff i ,j

maxdiff i ,j

MinFlow i ,j

Complexity: same as maximum flow, e.g., O(|V |2|E |)
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Coping with limiting memory

Problem:

I Limited available memory M

I Allow use of dynamic schedulers

I Avoid running out of memory

I Keep high level of parallelism (as much as possible)

Our solution:

I Add edges to guarantee that any parallel execution stays
below M
fictitious dependencies to reduce maximum memory

I Minimize the obtained critical path
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Problem definition and complexity

Definition (PartialSerialization).

Given a DAG G = (V ,E ) and a bound M, find a set of new edges
E ′ such that G ′ = (V ,E ∪ E ′) is a DAG, MaxMem(G ′) ≤ M and
CritPath(G ′) is minimized.

Theorem.

PartialSerialization is NP-hard in the stronge sense.

NB: stays NP-hard if we are given a sequential schedule σ of G which uses at
most a memory M.



Heuristic solutions for PartialSerialization

Framework:
(inspired by [Sb̂ırlea et al. 2014])

1. Compute a max. top. cut (S ,T )

2. If weight ≤ M : succeeds

3. Add edge (u, v) with u ∈ T , v ∈ S
without creating cycles;
or fail

4. Goto Step 1

S

s t

T

v

u

Several heuristic choices for Step 3:

MinLevels does not create a large critical path

RespectOrder follows a precomputed memory-efficient schedule,
always succeeds

MaxSize targets nodes dealing with large data

MaxMinSize variant of MaxSize



Simulations: dense random graphs (25, 50, 100 nodes)
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I x: memory (0 = DFS, 1 = MaxTopCut)
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I MinLevels performs best



Simulations: sparse random graphs (25, 50, 100 nodes)
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I x: memory (0 = DFS, 1 = MaxTopCut)
median ratio MaxTopCut / DFS ≈ 2

I y: CP / original CP → lower is better

I MinLevels performs best, but might fail



Simulations – Pegasus workflows (LIGO 100 nodes)
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I Memory divided by 5 for CP multiplied by 3
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Conclusion

Contributions:

I Maximum (parallel) memory of DAG:
⇔ Weight of the maximum topological cut

I Bound memory usage by adding of fictitious dependencies

Take-away messages:

I Trade-off between parallelism and maximum memory on DAGs
may be studied through cuts/flows.

I Apply to any DAG scheduling problem where storage matters

I Renewal in task graph scheduling: task-based runtime systems

I Such as: ParSec, StarPU, XKaapi
I Programmers write task code + dependencies
I Mapping/scheduling at runtime
I Need for lightweight online schedulers
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