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Modeling scientific applications as task graphs

» Scientific applications divided into | +/‘ | ||
rather independent modules (tasks) .{ q\,/.

» Tasks linked through data TN N

dependencies 33
» Directed Acyclic Graph of tasks ‘\(+» ‘\\ //‘

Multifrontal sparse matrix factorization
over runtimes

SOLHAR

» Task graph: tree (with
dependencies towards the root)

» Large temporary data

» Memory becomes a bottleneck

» Schedule trees with limited memory
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Task graph scheduling and memory

» Consider a simple task graph

> Tasks have durations and memory demands
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» Peak memory: maximum memory usage

» Trade-off between peak memory and makespan
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Going back to sequential processing

» Temporary data require memory

» Scheduling influences the peak memory
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Known results on sequential memory-aware scheduling:

» Optimal algorithm for trees [Liu, 1897], SP-graphs [Kayaaslan
et al., 2018]

» General graphs with unit size weights: pebble game [Sethi and
Ullman, 1973], PSPACE complete [Gilbert et al., 1980]



Today’s focus

» Dynamic scheduling of general graphs:

00000 00060

» On shared-memory platforms:

‘ memory ‘

Objective: limit memory consumption while allowing parallelism
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» Edge weights (m;;): data sizes
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Memory model

Task graphs with:
» Vertex weights (w;): task (estimated) durations
» Edge weights (m;;): data sizes

Simple memory model: at the beginning of a task
» Inputs are freed (instantaneously)
» Outputs are allocated

At the end of a task: outputs stay in memory

Emulation of other memory behaviours:

> Inputs + outputs allocated during task: duplicate nodes
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Memory model

Task graphs with:
» Vertex weights (w;): task (estimated) durations
» Edge weights (m;;): data sizes

Simple memory model: at the beginning of a task
» Inputs are freed (instantaneously)
» Outputs are allocated

At the end of a task: outputs stay in memory

Emulation of other memory behaviours:
> Inputs + outputs allocated during task: duplicate nodes
» Shared data: output data of A used for both B and C:
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Computing the maximum memory peak

Topological cut: (S, T) with:
» S include the source node, T include the target node
» No edge from T to S
> Weight of the cut = weight of all edges from S to T

Any topological cut corresponds to a possible state when all node
in S are completed or being processed.
Two equivalent questions (in our model):

» What is the maximum memory of any parallel execution?

» What is the topological cut with maximum weight?



Computing the maximum topological cut

Literature:

» Lots of studies of various cuts in non-directed graphs
([Diaz,2000] on Graph Layout Problems)

» Minimum cut is polynomial on both directed/non-directed
graphs

» Maximum cut NP-complete on both directed/non-directed
graphs ([Karp 1972] for non-directed, [Lampis 2011] for
directed ones)

» Not much for topological cuts

Theorem.
Computing the maximum topological cut of a DAG can be done in
polynomial time.



Maximum topological cut — using LP

» Consider one classical LP formulation for finding a minimum
cut:

min Z m; jd; j
(ij)eE
V(i,j) € E, dij > pi—pj
V(i,j)e E, dij>0
ps=1, pt=0
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Maximum topological cut — using LP

» Consider one classical LP formulation for finding a minimum
cut:

max Z m; jd; j
(iJ)eE
V(i,j) € E, dij=pi—pj
V(i,j) € E, dij=>0
ps =1, pr=0

v

Integer solution < topological cut

v

Then change the optimization direction (min — max)

v

Draw w uniformly in ]0, 1], define the cut such that
Sw:{i|pi>W}a TW:{/’P,SW}
Expected cost of this cut = M* (opt. rational solution)

v

All cuts with random w have the same cost M*
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Maximum topological cut — direct algorithm

» Dual problem: Min-Flow (larger than all edge weights)

> Idea: use an optimal algorithm for Max-Flow

Algorithm sketch
1. Build a large flow F on the graph G
2. Consider G“ with edge weights

Fij—mij
3. Compute a maximum flow maxdiff in

Gdiff
4. F — maxdiff is a minimum flow in G IMinF/OW/J
5. Residual graph — maximum

topological cut

Complexity: same as maximum flow, e.g., O(|V|?|E|)
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Maximum topological cut — direct algorithm

» Dual problem: Min-Flow (larger than all edge weights)

> Idea: use an optimal algorithm for Max-Flow

Algorithm sketch

Fi,

1. Build a large flow F on the graph G Y
2. Consider G“ with edge weights

Fij — mij i | | e
3. Compute a maximum flow maxdiff in

Gdiff
4. F — maxdiff is a minimum flow in G . I IM/nF/ow,-J-
5. Residual graph — maximum -

topological cut

Complexity: same as maximum flow, e.g., O(|V|?|E|)
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Coping with limiting memory

Problem:
» Limited available memory M
» Allow use of dynamic schedulers
» Avoid running out of memory
» Keep high level of parallelism (as much as possible)
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Problem definition and complexity

Definition (PartialSerialization).

Given a DAG G = (V,E) and a bound M, find a set of new edges
E’ such that G’ = (V,EU E’) is a DAG, MaxMem(G’) < M and
CritPath(G’) is minimized.

Theorem.
PartialSerialization is NP-hard in the stronge sense.

NB: stays NP-hard if we are given a sequential schedule o of G which uses at
most a memory M.



Heuristic solutions for PARTIALSERIALIZATION

Framework:
(inspired by [Sbirlea et al. 2014])

1. Compute a max. top. cut (S, T) ‘?‘ N
2. If weight < M : succeeds J y" T
= B o>
3. Add edge (u,v) withue T, vesS a ‘10
without creating cycles; S N ’ T
or fail
4. Goto Step 1

Several heuristic choices for Step 3:

MinLevels does not create a large critical path

RespectOrder follows a precomputed memory-efficient schedule,
always succeeds

MaxSize targets nodes dealing with large data

MaxMinSize variant of MaxSize



Simulations: dense random graphs (25, 50, 100 nodes)
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lower is
better

Normalized critical path
w
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0 5 0.7 0.8 0.9 1
[DFS memory = O] Normalized memory bound 1 = MaxTopCut

Heuristic E} MINLEVELS EI RESPECTORDER EI MAXMINSIZE EI MAXSIZE EI ILP

» x: memory (0 = DFS, 1 = MaxTopCut)
median ratio MaxTopCut / DFS ~ 1.3

» y: CP / original CP — lower is better
» MinLevels performs best
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Simulations: sparse random graphs (25, 50, 100 nodes)

lower is
better

Normalized critical path

0.4 0.5 0.6

0 . . . 0.7 0.8 0.9 1
[DFS memory = O] Normalized memory bound 1 = MaxTopCut

Heuristic E} MINLEVELS EI RESPECTORDER EI MAXMINSIZE EI MAXSIZE

» x: memory (0 = DFS, 1 = MaxTopCut)
median ratio MaxTopCut / DFS ~ 2

» y: CP / original CP — lower is better
» MinLevels performs best, but might fail
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Simulations — Pegasus workflows (LIGO 100 nodes)
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[DFS memory = O] Normalized memory bound 1 = MaxTopCut
Heuristic E9 MINLEVELS E RESPECTORDER £ MAXMINSIZE £ MAXSIZE

» Median ratio MaxTopCut / DFS ~ 20

» MinLevels performs best, RespectOrder always succeeds
» Memory divided by 5 for CP multiplied by 3
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Simulations — Pegasus workflows (LIGO 100 nodes)
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Conclusion

Contributions:

» Maximum (parallel) memory of DAG:
< Weight of the maximum topological cut

» Bound memory usage by adding of fictitious dependencies

Take-away messages:

» Trade-off between parallelism and maximum memory on DAGs
may be studied through cuts/flows.

» Apply to any DAG scheduling problem where storage matters
» Renewal in task graph scheduling: task-based runtime systems

Such as: ParSec, StarPU, XKaapi
Programmers write task code + dependencies
Mapping/scheduling at runtime

Need for lightweight online schedulers

vV vy vVvyy
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