Efficient scheduling of DAGs under bounded
memory

Loris Marchal
Joint work with Bertrand Simon & Frédéric Vivien

CNRS and University of Lyon

Journée Mao — Besangon 2019

UNIVERSITE
DE LYON




Modeling scientific applications as task graphs

» Scientific applications divided into | +/‘ | ||
rather independent modules (tasks) .{ q\,/.

» Tasks linked through data TN N

dependencies 33
» Directed Acyclic Graph of tasks ‘\(+» ‘\\ //‘

Multifrontal sparse matrix factorization
over runtimes

SOLHAR

» Task graph: tree (with
dependencies towards the root)

» Large temporary data

» Memory becomes a bottleneck

» Schedule trees with limited memory



Task graph scheduling and memory

» Consider a simple task graph



Task graph scheduling and memory

» Consider a simple task graph

> Tasks have durations and memory demands

e
7
: -

duratlon
.

memory
<—>




Task graph scheduling and memory

» Consider a simple task graph

> Tasks have durations and memory demands

Processor 2:

Processor 1:

v

— (5| — [N

=
/

time



Task graph scheduling and memory

» Consider a simple task graph

> Tasks have durations and memory demands

-
/

Processor 2:

Processor 1: A

out of memory!

» Peak memory: maximum memory usage

time



Task graph scheduling and memory

» Consider a simple task graph

> Tasks have durations and memory demands

e . » - » -

Processor 1: A — — -

time

» Peak memory: maximum memory usage

» Trade-off between peak memory and makespan



Going back to sequential processing

» Temporary data require memory

» Scheduling influences the peak memory




Going back to sequential processing

» Temporary data require memory

» Scheduling influences the peak memory
7~
—I i = =
R l~- =l




Going back to sequential processing

» Temporary data require memory

» Scheduling influences the peak memory

. . ---
ol = =

Known results on sequential memory-aware scheduling:

» Optimal algorithm for trees [Liu, 1897], SP-graphs [Kayaaslan
et al., 2018]

» General graphs with unit size weights: pebble game [Sethi and
Ullman, 1973], PSPACE complete [Gilbert et al., 1980]



Today’s focus

» Dynamic scheduling of general graphs:

00000 00060

» On shared-memory platforms:

‘ memory ‘

Objective: limit memory consumption while allowing parallelism



Qutline

Model and maximum parallel memory
Memory model
Maximum parallel memory/maximal topological cut

Efficient scheduling with bounded memory
Problem definition
Complexity
Heuristics
Simulation results

Conclusion



Qutline

Model and maximum parallel memory
Memory model
Maximum parallel memory/maximal topological cut



Memory model

Task graphs with:
» Vertex weights (w;): task (estimated) durations
» Edge weights (m;;): data sizes



Memory model

Task graphs with:
» Vertex weights (w;): task (estimated) durations
» Edge weights (m;;): data sizes
Simple memory model: at the beginning of a task
» Inputs are freed (instantaneously)
» Outputs are allocated
At the end of a task: outputs stay in memory

NOmON
. N\ Lo
@i@L@/



Memory model

Task graphs with:
» Vertex weights (w;): task (estimated) durations
» Edge weights (m;;): data sizes
Simple memory model: at the beginning of a task
» Inputs are freed (instantaneously)
» Outputs are allocated
At the end of a task: outputs stay in memory

SO0
C N\ L
(%g



Memory model

Task graphs with:
» Vertex weights (w;): task (estimated) durations
» Edge weights (m;;): data sizes
Simple memory model: at the beginning of a task
» Inputs are freed (instantaneously)
» Outputs are allocated
At the end of a task: outputs stay in memory

SO0
C N\ L
@i@L@/



Memory model

Task graphs with:
» Vertex weights (w;): task (estimated) durations
» Edge weights (m;;): data sizes

Simple memory model: at the beginning of a task
» Inputs are freed (instantaneously)
» Outputs are allocated

At the end of a task: outputs stay in memory



Memory model

Task graphs with:
» Vertex weights (w;): task (estimated) durations
» Edge weights (m;;): data sizes
Simple memory model: at the beginning of a task
» Inputs are freed (instantaneously)
» Outputs are allocated
At the end of a task: outputs stay in memory

NOaON
LN\ LD
@i@L@/



Memory model

Task graphs with:
» Vertex weights (w;): task (estimated) durations
» Edge weights (m;;): data sizes

Simple memory model: at the beginning of a task
» Inputs are freed (instantaneously)
» Outputs are allocated

At the end of a task: outputs stay in memory

Emulation of other memory behaviours:

> Inputs + outputs allocated during task: duplicate nodes

10 0

10
O RO On
— —



Memory model

Task graphs with:
» Vertex weights (w;): task (estimated) durations
» Edge weights (m;;): data sizes

Simple memory model: at the beginning of a task
» Inputs are freed (instantaneously)
» Outputs are allocated

At the end of a task: outputs stay in memory

Emulation of other memory behaviours:
> Inputs + outputs allocated during task: duplicate nodes
» Shared data: output data of A used for both B and C:

o @D
. q
© ©



Computing the maximum memory peak

Topological cut: (S, T) with:
» S include the source node, T include the target node
» No edge from T to S
> Weight of the cut = weight of all edges from S to T

Any topological cut corresponds to a possible state when all node
in S are completed or being processed.
Two equivalent questions (in our model):

» What is the maximum memory of any parallel execution?

» What is the topological cut with maximum weight?



Computing the maximum topological cut

Literature:

» Lots of studies of various cuts in non-directed graphs
([Diaz,2000] on Graph Layout Problems)

» Minimum cut is polynomial on both directed/non-directed
graphs

» Maximum cut NP-complete on both directed/non-directed
graphs ([Karp 1972] for non-directed, [Lampis 2011] for
directed ones)

» Not much for topological cuts

Theorem.
Computing the maximum topological cut of a DAG can be done in
polynomial time.



Maximum topological cut — using LP

» Consider one classical LP formulation for finding a minimum
cut:

min Z m; jd; j
(ij)eE
V(i,j) € E, dij > pi—pj
V(i,j)e E, dij>0
ps=1, pt=0



Maximum topological cut — using LP

» Consider one classical LP formulation for finding a minimum
cut:

min Z m,-,jd,-u-
(iJ)EE
V(i,j) € E, dij > pi—pj
V(i,j)e E, dij>0
ps=1, pr=0

> Integer solution < topological cut



Maximum topological cut — using LP

» Consider one classical LP formulation for finding a minimum
cut:

max Z m; jd; j
(iJ)eE
V(i,j) € E, dij=pi—pj
V(i,j)e E, dij>0
ps =1, pr=0

> Integer solution < topological cut
» Then change the optimization direction (min — max)



Maximum topological cut — using LP

» Consider one classical LP formulation for finding a minimum
cut:

max Z m; jd; j
(ij)eE
V(i,j) € E, dij=pi—pj
V(i,j)e E, dij>0

ps:]-v PtZO

> Integer solution < topological cut
» Then change the optimization direction (min — max)

» Draw w uniformly in ]0, 1[, define the cut such that
Sw:{i|pi>W}a TW:{/’P,SW}



Maximum topological cut — using LP

» Consider one classical LP formulation for finding a minimum
cut:

max Z m; jd; j
(iJ)eE
V(i,j) € E, dij=pi—pj
V(i,j) € E, dij=>0
ps =1, pr=0

v

Integer solution < topological cut

v

Then change the optimization direction (min — max)

v

Draw w uniformly in ]0, 1], define the cut such that
Sw:{i|pi>W}a TW:{/’P,SW}
Expected cost of this cut = M* (opt. rational solution)

v



Maximum topological cut — using LP

» Consider one classical LP formulation for finding a minimum
cut:

max Z m; jd; j
(iJ)eE
V(i,j) € E, dij=pi—pj
V(i,j) € E, dij=>0
ps =1, pr=0

v

Integer solution < topological cut

v

Then change the optimization direction (min — max)

v

Draw w uniformly in ]0, 1], define the cut such that
Sw:{i|pi>W}a TW:{/’P,SW}
Expected cost of this cut = M* (opt. rational solution)

v

All cuts with random w have the same cost M*

v



Maximum topological cut — direct algorithm

» Dual problem: Min-Flow (larger than all edge weights)

> Idea: use an optimal algorithm for Max-Flow

Algorithm sketch
1. Build a large flow F on the graph G
2. Consider G“ with edge weights

Fij—mij
3. Compute a maximum flow maxdiff in

Gdiff
4. F — maxdiff is a minimum flow in G IMinF/OW/J
5. Residual graph — maximum

topological cut

Complexity: same as maximum flow, e.g., O(|V|?|E|)



Maximum topological cut — direct algorithm

» Dual problem: Min-Flow (larger than all edge weights)

> Idea: use an optimal algorithm for Max-Flow

Algorithm sketch
1. Build a large flow F on the graph G
2. Consider G“ with edge weights
Ff:j — m,-J
3. Compute a maximum flow maxdiff in
Gdiff
4. F — maxdiff is a minimum flow in G mijI IMinF/OW/J

5. Residual graph — maximum
topological cut

Complexity: same as maximum flow, e.g., O(|V|?|E|)



Maximum topological cut — direct algorithm

» Dual problem: Min-Flow (larger than all edge weights)

> Idea: use an optimal algorithm for Max-Flow

Algorithm sketch
1. Build a large flow F on the graph G

2. Consider G“ with edge weights
Fij—mij

iJ

diff;
3. Compute a maximum flow maxdiff in
Gdiff
4. F — maxdiff is a minimum flow in G IMinF/ow,-J
m,'J'I

5. Residual graph — maximum
topological cut

Complexity: same as maximum flow, e.g., O(|V|?|E|)



Maximum topological cut — direct algorithm

» Dual problem: Min-Flow (larger than all edge weights)

> Idea: use an optimal algorithm for Max-Flow

Algorithm sketch
1. Build a large flow F on the graph G
2. Consider G“ with edge weights

Fij—mjj diff maxdiff
3. Compute a maximum flow maxdiff in
Gdiff
4. F — maxdiff is a minimum flow in G MinF/ow,-‘j

5. Residual graph — maximum
topological cut

Complexity: same as maximum flow, e.g., O(|V|?|E|)



Maximum topological cut — direct algorithm

» Dual problem: Min-Flow (larger than all edge weights)

> Idea: use an optimal algorithm for Max-Flow

Algorithm sketch

Fi,

1. Build a large flow F on the graph G Y
2. Consider G“ with edge weights

Fij — mij i | | e
3. Compute a maximum flow maxdiff in

Gdiff
4. F — maxdiff is a minimum flow in G . I IM/nF/ow,-J-
5. Residual graph — maximum -

topological cut

Complexity: same as maximum flow, e.g., O(|V|?|E|)



Qutline

Efficient scheduling with bounded memory
Problem definition
Complexity
Heuristics
Simulation results



Coping with limiting memory

Problem:
» Limited available memory M
» Allow use of dynamic schedulers
» Avoid running out of memory
» Keep high level of parallelism (as much as possible)



Coping with limiting memory

Problem:
» Limited available memory M
» Allow use of dynamic schedulers
» Avoid running out of memory

» Keep high level of parallelism (as much as possible)

Our solution:

> Add edges to guarantee that any parallel execution stays
below M
fictitious dependencies to reduce maximum memory

» Minimize the obtained critical path

SO OF
@<4@\



Coping with limiting memory

Problem:
» Limited available memory M
» Allow use of dynamic schedulers
» Avoid running out of memory

» Keep high level of parallelism (as much as possible)

Our solution:

> Add edges to guarantee that any parallel execution stays
below M
fictitious dependencies to reduce maximum memory

» Minimize the obtained critical path

M =10



Problem definition and complexity

Definition (PartialSerialization).

Given a DAG G = (V,E) and a bound M, find a set of new edges
E’ such that G’ = (V,EU E’) is a DAG, MaxMem(G’) < M and
CritPath(G’) is minimized.

Theorem.
PartialSerialization is NP-hard in the stronge sense.

NB: stays NP-hard if we are given a sequential schedule o of G which uses at
most a memory M.



Heuristic solutions for PARTIALSERIALIZATION

Framework:
(inspired by [Sbirlea et al. 2014])

1. Compute a max. top. cut (S, T) ‘?‘ N
2. If weight < M : succeeds J y" T
= B o>
3. Add edge (u,v) withue T, vesS a ‘10
without creating cycles; S N ’ T
or fail
4. Goto Step 1

Several heuristic choices for Step 3:

MinLevels does not create a large critical path

RespectOrder follows a precomputed memory-efficient schedule,
always succeeds

MaxSize targets nodes dealing with large data

MaxMinSize variant of MaxSize



Simulations: dense random graphs (25, 50, 100 nodes)

1 O O A IO O O

IS

lower is
better

Normalized critical path
w

0.2 0.3 0.4 0.5 0.6

0 5 0.7 0.8 0.9 1
[DFS memory = O] Normalized memory bound 1 = MaxTopCut

Heuristic E} MINLEVELS EI RESPECTORDER EI MAXMINSIZE EI MAXSIZE EI ILP

» x: memory (0 = DFS, 1 = MaxTopCut)
median ratio MaxTopCut / DFS ~ 1.3

» y: CP / original CP — lower is better
» MinLevels performs best

«O> «F>r «=)r» (=)

it
)
¥l
i)



Simulations: sparse random graphs (25, 50, 100 nodes)

lower is
better

Normalized critical path

0.4 0.5 0.6

0 . . . 0.7 0.8 0.9 1
[DFS memory = O] Normalized memory bound 1 = MaxTopCut

Heuristic E} MINLEVELS EI RESPECTORDER EI MAXMINSIZE EI MAXSIZE

» x: memory (0 = DFS, 1 = MaxTopCut)
median ratio MaxTopCut / DFS ~ 2

» y: CP / original CP — lower is better
» MinLevels performs best, but might fail

u]
o)
1
n
it
)
»
i)



Simulations — Pegasus workflows (LIGO 100 nodes)

k=)

21

-

2

fE

. =

lower is &
El

better &

N
0 . 0.2 03 04 0.5 0.6 07 08 0.9 1
[DFS memory = O] Normalized memory bound 1 = MaxTopCut
Heuristic E9 MINLEVELS E RESPECTORDER £ MAXMINSIZE £ MAXSIZE

» Median ratio MaxTopCut / DFS ~ 20

» MinLevels performs best, RespectOrder always succeeds
» Memory divided by 5 for CP multiplied by 3

«O» «F»r «

it
)
¥l
i)



Simulations — Pegasus workflows (LIGO 100 nodes)

lower is
better

Normalized critical path

50 0 o1 o2 03 04 o5 os o7
[DFS memory = O]

os 091
Normalized memory bound 1= MaxTopCut

Heuristic E9 MINLEVELS E RESPECTORDER £ MAXMINSIZE £ MAXSIZE

» Median ratio MaxTopCut / DFS ~ 20

» MinLevels performs best, RespectOrder always succeeds
» Memory divided by 5 for CP multiplied by 3

«O» «F»r «

it
)
¥l
i)



Qutline

Conclusion



Conclusion

Contributions:

» Maximum (parallel) memory of DAG:
< Weight of the maximum topological cut

» Bound memory usage by adding of fictitious dependencies

Take-away messages:

» Trade-off between parallelism and maximum memory on DAGs
may be studied through cuts/flows.

» Apply to any DAG scheduling problem where storage matters
» Renewal in task graph scheduling: task-based runtime systems

Such as: ParSec, StarPU, XKaapi
Programmers write task code + dependencies
Mapping/scheduling at runtime

Need for lightweight online schedulers

vV vy vVvyy



	Model and maximum parallel memory
	Memory model
	Maximum parallel memory/maximal topological cut

	Efficient scheduling with bounded memory
	Problem definition
	Complexity
	Heuristics
	Simulation results

	Conclusion

