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Introduction

Speed Scaling

Speed Scaling:
Save energy by varying the processor’s speed.

Model [Yao, Demers, Shenker, 1995]

Power consumption of a CMOS processor: P(t) = s(t)α

CMOS: dominant technology for constructing microprocessors
s(t): processor’s speed at time t
α > 1: machine-dependent constant, usually α ∈ (1, 3]
[Wierman, Andrew, Tang, 2009]:
α = 1.11 for Intel PXA 270, α = 1.62 for Intel Pentium M 770

w =
∫
s(t)dt

time

speed

work

E =
∫
P(t)dt

time

speedα

energy
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Introduction

Scheduling with Speed Scaling

Scheduling:
Choose a running job every time.

time

time

Scheduling with Speed Scaling:
Decide the job and the speed.

speed

time

speed

time
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Introduction

Problem Definition

Instance:
A set of n precedence-constrained jobs J .

Job j has work wj .

A set of m parallel processors.

A budget of energy E .

Objective:

Find a non-preemptive schedule of minimum makespan,
without exceeding the energy budget.
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Introduction

Precedence Constraints

Precedence constraints: directed acyclic graph G = (V ,E ).

V : a vertex for each job

(j , j ′) ∈ E : j ′ can be executed only after the completion of j
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Introduction

Previous Work and Our Contribution

No Energy - Problem PREC:

List Scheduling is (2− 1
m )-approximate [graham, 1966].

No (2− c)-approximation algorithm where c is a constant, assuming a
variant of the unique games conjecture [svensson, 2010].

Uniformly Related processors (every machine i has speed si ):
O(logm)-approximation algorithm [chudak, shmoys 1999]

With Energy - Problem PRECS :

O(log1+2/αm)-approximation algorithm [pruhs et al. 2008]
1 Constant power schedules.
2 Binary search to determine the power.
3 Algorithm for uniformly related machines.

(2− 1
m )-approximation algorithm [this talk]
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Algorithm for Precedence Constraints

List Scheduling

List Scheduling (LS):

Every time that a processor i becomes available, schedule on i a job of which
all the predecessors have been completed.
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Algorithm for Precedence Constraints

List Scheduling

Theorem (graham, 1966)

LS is (2− 1
m )-approximate for PREC.

Lower bounds on the makespan of the optimal schedule:

Copt ≥ 1
m

∑
j∈J pj

Copt ≥
∑

j∈T pj for each path T of the graph G .

LS returns a schedule with makespan

Calg ≤
(

2− 1

m

)
max

 1

m

∑
j∈J

pj ,max
T

∑
j∈T

pj
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Algorithm for Precedence Constraints

Relation between Energy and Processing Times

Consequences of the convexity of the power function P(s).

In an optimal solution, each job j runs with constant speed sj .

Processing time of job j :

xj =
wj

sj

Energy consumption for the execution of job j :

Ej = xj · sαj =
wα
j

xα−1j

The energy can be expressed as a convex function E (~x) of the vector ~x of the
processing times of the jobs.
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Algorithm for Precedence Constraints

Convex Programming Relaxation

Variables:

y : makespan

xj : processing time of job j

min y

y ≥ 1

m

∑
j∈J

xj

y ≥
∑
j∈T

xj for every path T of G

∑
j∈J

wα
j

xα−1j

≤ E

xj ≥ 0

Remark:

The convex program has an exponential number of constraints.

Giorgio Lucarelli Multiprocessor Speed Scaling with Precedence Constraints June 7, 2019 12 / 23



Algorithm for Precedence Constraints

Convex Programming Relaxation

Variables:

y : makespan

xj : processing time of job j

min y

y ≥ 1

m

∑
j∈J

xj

y ≥
∑
j∈T

xj for every path T of G

∑
j∈J

wα
j

xα−1j

≤ E

xj ≥ 0

Remark:

The convex program has an exponential number of constraints.

Giorgio Lucarelli Multiprocessor Speed Scaling with Precedence Constraints June 7, 2019 12 / 23



Algorithm for Precedence Constraints

Approximation Algorithm

Algorithm:

Compute an optimal solution ~xcp of the convex program.

Schedule the jobs by using List Scheduling and the processing times xcp.

Theorem

The above algorithm is (2− 1
m )-approximate for PRECS .

~xcp: processing times obtained by solving the convex program.

~xopt : processing times of an optimal schedule.

CP(~x): value of the convex program w.r.t. the processing times ~x .

Calg ≤
(

2− 1

m

)
· CP(~xcp) ≤

(
2− 1

m

)
· CP(~xopt) ≤

(
2− 1

m

)
· Copt
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Algorithm for Precedence Constraints

A Convex Relaxation of Polynomial Size

The convex program has an exponential number of constraints:

y ≥
∑
j∈T

xj for every path T of G

We obtain an equivalent LP of polynomial size as follows:

We introduce a variable yj indicating the completion time of job j .

We replace the above constraints with the following:

yj ≤ y j ∈ J

xj ≤ yj j ∈ J

yj + xj′ ≤ yj′ (j , j ′) ∈ E

yj ≥ 0 j ∈ J

So, we can solve the convex relaxation in polynomial time by applying the
Ellipsoid algorithm to the new equivalent convex program.
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General Framework

Goal

Consider the following generic problems:

Π: a classical makespan minimization problem

ΠS : the speed scaling variant with a budget of energy

Assumption:
The energy consumption can be expressed as a convex function E (~x) of the vector
of the processing times ~x of the jobs.

Is it possible to obtain a ρ-approximation algorithm for ΠS by using a known
ρ-algorithm A for Π as a black box?

Under some conditions, yes.
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General Framework

Conditions

A set of ` linear bounds on Π’s optimal solution of the form

Copt ≥ fk(~p) k = 1, 2, . . . , `

Copt : value of the optimal solution for Π,
~p: the vector of processing times of the jobs,
fk(~p): a linear function of ~p.

The ρ-approximation algorithm A always produces a solution for Π s.t.

Calg ≤ ρ ·
`

max
k=1
{fk(~p)}

Calg : value of the A’s solution for Π.
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General Framework

Meta-Theorem

Theorem
The previous conditions imply a ρ-approximation algorithm for ΠS .

Algorithm:
1. Compute an optimal solution ~xcp of the following convex program:

min y

y ≥ fk(~x) k = 1, 2, . . . , `

E (~x) ≤ E

~x ≥ 0

2. Schedule the jobs by using algorithm A and the processing times ~xcp.
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Application: Open Shop
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Application: Open Shop

Problem Definition

Instance:
A set of n jobs J and a set of m processors P.

Each job j consists of m operations O1,j ,O2,j , . . . ,Om,j .

Operation Oi,j has an amount of work wi,j and it must be executed
entirely by the processor i .

Two operations of the same job cannot be executed at the same time.

A budget of energy E .

i

i ′ Oi ′,j

Oi,j i

i ′ Oi ′,j

Oi,j

Objective:

Find a non-preemptive schedule of minimum makespan, without
exceeding the energy budget.
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Application: Open Shop

Application of the Framework

Energy consumption: a convex function of the processing times of the operations.

Lower Bounds for problem SHOP without energy:

Copt ≥
∑

j∈J pi,j for all i ∈ P.

Copt ≥
∑

i∈P pi,j for all j ∈ J.

List Scheduling (LS):
Whenever a processor i ∈ P becomes available, schedule on i an operation Oi,j of
a job j ∈ J which is not processed by any other processor at the same time.

[racsmány]:
LS produces a schedule for SHOP with makespan

Calg ≤ 2 ·max

max
i∈P

∑
j∈J

pi,j

 ,max
j∈J

{∑
i∈P

pi,j

}
Therefore, there exists a 2-approximation algorithm for SHOPS .
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Conclusion

Concluding Remarks

Summary:

(2− 1
m )-approximation algorithm for the makespan minimization

multiprocessor speed scaling problem with two steps:

Compute nice processing times for the jobs by solving a convex relaxation.
Apply list scheduling.

A general framework for solving speed scaling problems.

Open questions:

Is it possible to show “equivalence” between speed scaling and classical
scheduling problems?

Check the speed scaling version of the problem 1|pmtn, rj |
∑

Cj .
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