Multiprocessor Speed Scaling with Precedence Constraints

Giorgio Lucarelli LCOMS, Université de Lorraine

June 7, 2019

Joint work with Evripidis Bampis and Dimitrios Letsios

Outline

- Introduction
- 2 Algorithm for Precedence Constraints
- General Framework
- Application: Open Shop
- Conclusion

Speed Scaling

Speed Scaling:

Save energy by varying the processor's speed.

Model [Yao, Demers, Shenker, 1995]

Power consumption of a CMOS processor: $P(t) = s(t)^{\alpha}$

- CMOS: dominant technology for constructing microprocessors
- s(t): processor's speed at time t
- $\alpha > 1$: machine-dependent constant, usually $\alpha \in (1,3]$
- [Wierman, Andrew, Tang, 2009]: $\alpha = 1.11$ for Intel PXA 270, $\alpha = 1.62$ for Intel Pentium M 770

Scheduling with Speed Scaling

Scheduling:

Choose a running job every time.

Scheduling with Speed Scaling:

Decide the job and the speed.

Problem Definition

Instance:

- A set of n precedence-constrained jobs \mathcal{J} .
 - Job j has work w_i .
- A set of m parallel processors.
- A budget of energy *E*.

Objective:

• Find a non-preemptive schedule of minimum makespan, without exceeding the energy budget.

Precedence Constraints

Precedence constraints: directed acyclic graph G = (V, E).

- V: a vertex for each job
- $(j,j') \in E$: j' can be executed only after the completion of j

No Energy - Problem PREC:

• List Scheduling is $(2 - \frac{1}{m})$ -approximate [GRAHAM, 1966].

No Energy - Problem PREC:

- List Scheduling is $(2 \frac{1}{m})$ -approximate [GRAHAM, 1966].
- No (2-c)-approximation algorithm where c is a constant, assuming a variant of the unique games conjecture [SVENSSON, 2010].

No Energy - Problem PREC:

- List Scheduling is $(2 \frac{1}{m})$ -approximate [GRAHAM, 1966].
- No (2-c)-approximation algorithm where c is a constant, assuming a variant of the unique games conjecture [SVENSSON, 2010].
- Uniformly Related processors (every machine i has speed s_i): $O(\log m)$ -approximation algorithm [CHUDAK, SHMOYS 1999]

No Energy - Problem PREC:

- List Scheduling is $(2 \frac{1}{m})$ -approximate [GRAHAM, 1966].
- No (2-c)-approximation algorithm where c is a constant, assuming a variant of the unique games conjecture [SVENSSON, 2010].
- Uniformly Related processors (every machine i has speed s_i): $O(\log m)$ -approximation algorithm [CHUDAK, SHMOYS 1999]

With Energy - Problem PREC_S:

• $O(\log^{1+2/\alpha} m)$ -approximation algorithm [PRUHS ET AL. 2008]

No Energy - Problem PREC:

- List Scheduling is $(2 \frac{1}{m})$ -approximate [GRAHAM, 1966].
- No (2-c)-approximation algorithm where c is a constant, assuming a variant of the unique games conjecture [SVENSSON, 2010].
- Uniformly Related processors (every machine i has speed s_i): $O(\log m)$ -approximation algorithm [CHUDAK, SHMOYS 1999]

With Energy - Problem PREC_S:

- $O(\log^{1+2/\alpha} m)$ -approximation algorithm [PRUHS ET AL. 2008]
 - Constant power schedules.
 - 2 Binary search to determine the power.
 - 3 Algorithm for uniformly related machines.

No Energy - Problem PREC:

- List Scheduling is $(2 \frac{1}{m})$ -approximate [GRAHAM, 1966].
- No (2-c)-approximation algorithm where c is a constant, assuming a variant of the unique games conjecture [SVENSSON, 2010].
- Uniformly Related processors (every machine i has speed s_i): $O(\log m)$ -approximation algorithm [CHUDAK, SHMOYS 1999]

With Energy - Problem PREC_S:

- $O(\log^{1+2/\alpha} m)$ -approximation algorithm [PRUHS ET AL. 2008]
 - Constant power schedules.
 - 2 Binary search to determine the power.
 - 3 Algorithm for uniformly related machines.
- $(2-\frac{1}{m})$ -approximation algorithm [this talk]

Outline

- Introduction
- 2 Algorithm for Precedence Constraints
- General Framework
- Application: Open Shop
- Conclusion

List Scheduling (LS):

List Scheduling (LS):

List Scheduling (LS):

List Scheduling (LS):

List Scheduling (LS):

List Scheduling (LS):

List Scheduling (LS):

• Every time that a processor *i* becomes available, schedule on *i* a job of which all the predecessors have been completed.

12 13 14 15 16

List Scheduling (LS):

Theorem (GRAHAM, 1966)

LS is $(2-\frac{1}{m})$ -approximate for PREC.

Lower bounds on the makespan of the optimal schedule:

- $C_{opt} \geq \frac{1}{m} \sum_{j \in J} p_j$
- $C_{opt} \geq \sum_{i \in T} p_i$ for each path T of the graph G.

LS returns a schedule with makespan

$$C_{alg} \leq \left(2 - \frac{1}{m}\right) \max \left\{ \frac{1}{m} \sum_{j \in J} p_j, \max_{T} \left\{ \sum_{j \in T} p_j \right\} \right\}$$

Relation between Energy and Processing Times

Consequences of the convexity of the power function P(s).

- In an optimal solution, each job j runs with constant speed s_i .
- Processing time of job *j*:

$$x_j = \frac{w_j}{s_j}$$

• Energy consumption for the execution of job *j*:

$$E_j = x_j \cdot s_j^{\alpha} = \frac{w_j^{\alpha}}{x_j^{\alpha - 1}}$$

• The energy can be expressed as a convex function $E(\vec{x})$ of the vector \vec{x} of the processing times of the jobs.

Convex Programming Relaxation

Variables:

- y: makespan
- x_i : processing time of job j

$$\min y$$
 $y \geq rac{1}{m} \sum_{j \in J} x_j$
 $y \geq \sum_{j \in T} x_j$ for every path T of G
 $\sum_{j \in J} rac{w_j^{lpha}}{x_j^{lpha-1}} \leq E$
 $x_j \geq 0$

Convex Programming Relaxation

Variables:

- y: makespan
- x_i : processing time of job j

$$\min y$$

$$y \ge \frac{1}{m} \sum_{j \in J} x_j$$

$$y \ge \sum_{j \in T} x_j \quad \text{for every path } T \text{ of } G$$

$$\sum_{j \in J} \frac{w_j^{\alpha}}{x_j^{\alpha - 1}} \le E$$

$$x_j \ge 0$$

Remark:

• The convex program has an exponential number of constraints.

Approximation Algorithm

Algorithm:

- Compute an optimal solution \vec{x}_{cp} of the convex program.
- Schedule the jobs by using List Scheduling and the processing times x_{cp} .

Theorem

The above algorithm is $(2-\frac{1}{m})$ -approximate for PREC_S.

Approximation Algorithm

Algorithm:

- Compute an optimal solution \vec{x}_{cp} of the convex program.
- Schedule the jobs by using List Scheduling and the processing times x_{cp} .

Theorem

The above algorithm is $(2-\frac{1}{m})$ -approximate for PREC_S.

- \vec{x}_{CD} : processing times obtained by solving the convex program.
- \vec{x}_{opt} : processing times of an optimal schedule.
- $CP(\vec{x})$: value of the convex program w.r.t. the processing times \vec{x} .

$$C_{alg} \leq \left(2 - \frac{1}{m}\right) \cdot \mathit{CP}(\vec{x}_{\mathit{cp}}) \leq \left(2 - \frac{1}{m}\right) \cdot \mathit{CP}(\vec{x}_{\mathit{opt}}) \leq \left(2 - \frac{1}{m}\right) \cdot C_{\mathit{opt}}$$

A Convex Relaxation of Polynomial Size

The convex program has an exponential number of constraints:

$$y \ge \sum_{j \in T} x_j$$
 for every path T of G

We obtain an equivalent LP of polynomial size as follows:

- We introduce a variable y_i indicating the completion time of job j.
- We replace the above constraints with the following:

$$y_{j} \leq y \quad j \in J$$

$$x_{j} \leq y_{j} \quad j \in J$$

$$y_{j} + x_{j'} \leq y_{j'} \quad (j, j') \in E$$

$$y_{j} \geq 0 \quad j \in J$$

So, we can solve the convex relaxation in polynomial time by applying the Ellipsoid algorithm to the new equivalent convex program.

Outline

- Introduction
- 2 Algorithm for Precedence Constraints
- General Framework
- Application: Open Shop
- Conclusion

Goal

Consider the following generic problems:

- Π: a classical makespan minimization problem
- Π_S : the speed scaling variant with a budget of energy

Assumption:

The energy consumption can be expressed as a convex function $E(\vec{x})$ of the vector of the processing times \vec{x} of the jobs.

Is it possible to obtain a ρ -approximation algorithm for Π_S by using a known ρ -algorithm $\mathcal A$ for Π as a black box?

Under some conditions, yes.

Conditions

• A set of ℓ linear bounds on Π 's optimal solution of the form

$$C_{opt} \geq f_k(\vec{p})$$
 $k = 1, 2, \dots, \ell$

 C_{opt} : value of the optimal solution for Π , \vec{p} : the vector of processing times of the jobs, $f_k(\vec{p})$: a linear function of \vec{p} .

• The ρ -approximation algorithm A always produces a solution for Π s.t.

$$C_{alg} \leq \rho \cdot \max_{k=1}^{\ell} \left\{ f_k(\vec{p}) \right\}$$

 C_{alg} : value of the \mathcal{A} 's solution for Π .

Meta-Theorem

Theorem

The previous conditions imply a ρ -approximation algorithm for Π_S .

Algorithm:

1. Compute an optimal solution \vec{x}_{cp} of the following convex program:

2. Schedule the jobs by using algorithm A and the processing times \vec{x}_{cp} .

Outline

- Introduction
- 2 Algorithm for Precedence Constraints
- General Framework
- 4 Application: Open Shop
- Conclusion

Problem Definition

Instance:

- A set of *n* jobs *J* and a set of *m* processors *P*.
- Each job j consists of m operations $O_{1,j}, O_{2,j}, \ldots, O_{m,j}$.
 - Operation O_{i,j} has an amount of work w_{i,j} and it must be executed entirely by the processor i.
- Two operations of the same job cannot be executed at the same time.
- A budget of energy E.

Objective:

 Find a non-preemptive schedule of minimum makespan, without exceeding the energy budget.

Energy consumption: a convex function of the processing times of the operations.

Energy consumption: a convex function of the processing times of the operations.

Lower Bounds for problem SHOP without energy:

- $C_{opt} \ge \sum_{i \in \mathcal{J}} p_{i,j}$ for all $i \in P$.
- $C_{opt} \geq \sum_{i \in \mathcal{P}} p_{i,j}$ for all $j \in J$.

Energy consumption: a convex function of the processing times of the operations.

Lower Bounds for problem SHOP without energy:

- $C_{opt} \ge \sum_{i \in \mathcal{I}} p_{i,j}$ for all $i \in P$.
- $C_{opt} \geq \sum_{i \in \mathcal{P}} p_{i,j}$ for all $j \in J$.

List Scheduling (LS):

Whenever a processor $i \in \mathcal{P}$ becomes available, schedule on i an operation $O_{i,j}$ of a job $j \in \mathcal{J}$ which is not processed by any other processor at the same time.

[RACSMÁNY]:

LS produces a schedule for SHOP with makespan

$$C_{alg} \leq 2 \cdot \max \left\{ \max_{i \in \mathcal{P}} \left\{ \sum_{j \in \mathcal{J}} p_{i,j} \right\}, \max_{j \in \mathcal{J}} \left\{ \sum_{i \in \mathcal{P}} p_{i,j} \right\} \right\}$$

Energy consumption: a convex function of the processing times of the operations.

Lower Bounds for problem SHOP without energy:

- $C_{opt} \ge \sum_{i \in \mathcal{I}} p_{i,j}$ for all $i \in P$.
- $C_{opt} \ge \sum_{i \in \mathcal{P}} p_{i,j}$ for all $j \in J$.

List Scheduling (LS):

Whenever a processor $i \in \mathcal{P}$ becomes available, schedule on i an operation $O_{i,j}$ of a job $j \in \mathcal{J}$ which is not processed by any other processor at the same time.

[RACSMÁNY]:

LS produces a schedule for SHOP with makespan

$$C_{alg} \leq 2 \cdot \max \left\{ \max_{i \in \mathcal{P}} \left\{ \sum_{j \in \mathcal{J}} p_{i,j} \right\}, \max_{j \in \mathcal{J}} \left\{ \sum_{i \in \mathcal{P}} p_{i,j} \right\} \right\}$$

Therefore, there exists a 2-approximation algorithm for SHOP_S.

Outline

- Introduction
- 2 Algorithm for Precedence Constraints
- General Framework
- Application: Open Shop
- Conclusion

Concluding Remarks

Summary:

- $(2 \frac{1}{m})$ -approximation algorithm for the makespan minimization multiprocessor speed scaling problem with two steps:
 - Compute nice processing times for the jobs by solving a convex relaxation.
 - Apply list scheduling.
- A general framework for solving speed scaling problems.

Open questions:

- Is it possible to show "equivalence" between speed scaling and classical scheduling problems?
- Check the speed scaling version of the problem $1|pmtn, r_j| \sum C_j$.