
Multiprocessor Speed Scaling with Precedence
Constraints

Giorgio Lucarelli
LCOMS, Université de Lorraine

June 7, 2019

Joint work with Evripidis Bampis and Dimitrios Letsios

Giorgio Lucarelli Multiprocessor Speed Scaling with Precedence Constraints June 7, 2019 1 / 23

Introduction

Outline

1 Introduction

2 Algorithm for Precedence Constraints

3 General Framework

4 Application: Open Shop

5 Conclusion

Giorgio Lucarelli Multiprocessor Speed Scaling with Precedence Constraints June 7, 2019 2 / 23

Introduction

Speed Scaling

Speed Scaling:
Save energy by varying the processor’s speed.

Model [Yao, Demers, Shenker, 1995]

Power consumption of a CMOS processor: P(t) = s(t)α

CMOS: dominant technology for constructing microprocessors
s(t): processor’s speed at time t
α > 1: machine-dependent constant, usually α ∈ (1, 3]
[Wierman, Andrew, Tang, 2009]:
α = 1.11 for Intel PXA 270, α = 1.62 for Intel Pentium M 770

w =
∫
s(t)dt

time

speed

work

E =
∫
P(t)dt

time

speedα

energy

Giorgio Lucarelli Multiprocessor Speed Scaling with Precedence Constraints June 7, 2019 3 / 23

Introduction

Scheduling with Speed Scaling

Scheduling:
Choose a running job every time.

time

time

Scheduling with Speed Scaling:
Decide the job and the speed.

speed

time

speed

time

Giorgio Lucarelli Multiprocessor Speed Scaling with Precedence Constraints June 7, 2019 4 / 23

Introduction

Problem Definition

Instance:
A set of n precedence-constrained jobs J .

Job j has work wj .

A set of m parallel processors.

A budget of energy E .

Objective:

Find a non-preemptive schedule of minimum makespan,
without exceeding the energy budget.

Giorgio Lucarelli Multiprocessor Speed Scaling with Precedence Constraints June 7, 2019 5 / 23

Introduction

Precedence Constraints

Precedence constraints: directed acyclic graph G = (V ,E).

V : a vertex for each job

(j , j ′) ∈ E : j ′ can be executed only after the completion of j

1

2

3

4

5

6

7

Giorgio Lucarelli Multiprocessor Speed Scaling with Precedence Constraints June 7, 2019 6 / 23

Introduction

Previous Work and Our Contribution

No Energy - Problem PREC:

List Scheduling is (2− 1
m)-approximate [graham, 1966].

No (2− c)-approximation algorithm where c is a constant, assuming a
variant of the unique games conjecture [svensson, 2010].

Uniformly Related processors (every machine i has speed si):
O(logm)-approximation algorithm [chudak, shmoys 1999]

With Energy - Problem PRECS :

O(log1+2/αm)-approximation algorithm [pruhs et al. 2008]
1 Constant power schedules.
2 Binary search to determine the power.
3 Algorithm for uniformly related machines.

(2− 1
m)-approximation algorithm [this talk]

Giorgio Lucarelli Multiprocessor Speed Scaling with Precedence Constraints June 7, 2019 7 / 23

Introduction

Previous Work and Our Contribution

No Energy - Problem PREC:

List Scheduling is (2− 1
m)-approximate [graham, 1966].

No (2− c)-approximation algorithm where c is a constant, assuming a
variant of the unique games conjecture [svensson, 2010].

Uniformly Related processors (every machine i has speed si):
O(logm)-approximation algorithm [chudak, shmoys 1999]

With Energy - Problem PRECS :

O(log1+2/αm)-approximation algorithm [pruhs et al. 2008]
1 Constant power schedules.
2 Binary search to determine the power.
3 Algorithm for uniformly related machines.

(2− 1
m)-approximation algorithm [this talk]

Giorgio Lucarelli Multiprocessor Speed Scaling with Precedence Constraints June 7, 2019 7 / 23

Introduction

Previous Work and Our Contribution

No Energy - Problem PREC:

List Scheduling is (2− 1
m)-approximate [graham, 1966].

No (2− c)-approximation algorithm where c is a constant, assuming a
variant of the unique games conjecture [svensson, 2010].

Uniformly Related processors (every machine i has speed si):
O(logm)-approximation algorithm [chudak, shmoys 1999]

With Energy - Problem PRECS :

O(log1+2/αm)-approximation algorithm [pruhs et al. 2008]
1 Constant power schedules.
2 Binary search to determine the power.
3 Algorithm for uniformly related machines.

(2− 1
m)-approximation algorithm [this talk]

Giorgio Lucarelli Multiprocessor Speed Scaling with Precedence Constraints June 7, 2019 7 / 23

Introduction

Previous Work and Our Contribution

No Energy - Problem PREC:

List Scheduling is (2− 1
m)-approximate [graham, 1966].

No (2− c)-approximation algorithm where c is a constant, assuming a
variant of the unique games conjecture [svensson, 2010].

Uniformly Related processors (every machine i has speed si):
O(logm)-approximation algorithm [chudak, shmoys 1999]

With Energy - Problem PRECS :

O(log1+2/αm)-approximation algorithm [pruhs et al. 2008]

1 Constant power schedules.
2 Binary search to determine the power.
3 Algorithm for uniformly related machines.

(2− 1
m)-approximation algorithm [this talk]

Giorgio Lucarelli Multiprocessor Speed Scaling with Precedence Constraints June 7, 2019 7 / 23

Introduction

Previous Work and Our Contribution

No Energy - Problem PREC:

List Scheduling is (2− 1
m)-approximate [graham, 1966].

No (2− c)-approximation algorithm where c is a constant, assuming a
variant of the unique games conjecture [svensson, 2010].

Uniformly Related processors (every machine i has speed si):
O(logm)-approximation algorithm [chudak, shmoys 1999]

With Energy - Problem PRECS :

O(log1+2/αm)-approximation algorithm [pruhs et al. 2008]
1 Constant power schedules.
2 Binary search to determine the power.
3 Algorithm for uniformly related machines.

(2− 1
m)-approximation algorithm [this talk]

Giorgio Lucarelli Multiprocessor Speed Scaling with Precedence Constraints June 7, 2019 7 / 23

Introduction

Previous Work and Our Contribution

No Energy - Problem PREC:

List Scheduling is (2− 1
m)-approximate [graham, 1966].

No (2− c)-approximation algorithm where c is a constant, assuming a
variant of the unique games conjecture [svensson, 2010].

Uniformly Related processors (every machine i has speed si):
O(logm)-approximation algorithm [chudak, shmoys 1999]

With Energy - Problem PRECS :

O(log1+2/αm)-approximation algorithm [pruhs et al. 2008]
1 Constant power schedules.
2 Binary search to determine the power.
3 Algorithm for uniformly related machines.

(2− 1
m)-approximation algorithm [this talk]

Giorgio Lucarelli Multiprocessor Speed Scaling with Precedence Constraints June 7, 2019 7 / 23

Algorithm for Precedence Constraints

Outline

1 Introduction

2 Algorithm for Precedence Constraints

3 General Framework

4 Application: Open Shop

5 Conclusion

Giorgio Lucarelli Multiprocessor Speed Scaling with Precedence Constraints June 7, 2019 8 / 23

Algorithm for Precedence Constraints

List Scheduling

List Scheduling (LS):

Every time that a processor i becomes available, schedule on i a job of which
all the predecessors have been completed.

1

2

3

4

5

6

7

time0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1

2

3

4 5

6

7

Giorgio Lucarelli Multiprocessor Speed Scaling with Precedence Constraints June 7, 2019 9 / 23

Algorithm for Precedence Constraints

List Scheduling

List Scheduling (LS):

Every time that a processor i becomes available, schedule on i a job of which
all the predecessors have been completed.

1

2

3

4

5

6

7

time0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1

2

3

4 5

6

7

Giorgio Lucarelli Multiprocessor Speed Scaling with Precedence Constraints June 7, 2019 9 / 23

Algorithm for Precedence Constraints

List Scheduling

List Scheduling (LS):

Every time that a processor i becomes available, schedule on i a job of which
all the predecessors have been completed.

1

2

3

4

5

6

7

time0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1

2

3

4 5

6

7

Giorgio Lucarelli Multiprocessor Speed Scaling with Precedence Constraints June 7, 2019 9 / 23

Algorithm for Precedence Constraints

List Scheduling

List Scheduling (LS):

Every time that a processor i becomes available, schedule on i a job of which
all the predecessors have been completed.

1

2

3

4

5

6

7

time0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1

2

3

4 5

6

7

Giorgio Lucarelli Multiprocessor Speed Scaling with Precedence Constraints June 7, 2019 9 / 23

Algorithm for Precedence Constraints

List Scheduling

List Scheduling (LS):

Every time that a processor i becomes available, schedule on i a job of which
all the predecessors have been completed.

1

2

3

4

5

6

7

time0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1

2

3

4

5

6

7

Giorgio Lucarelli Multiprocessor Speed Scaling with Precedence Constraints June 7, 2019 9 / 23

Algorithm for Precedence Constraints

List Scheduling

List Scheduling (LS):

Every time that a processor i becomes available, schedule on i a job of which
all the predecessors have been completed.

1

2

3

4

5

6

7

time0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1

2

3

4 5

6

7

Giorgio Lucarelli Multiprocessor Speed Scaling with Precedence Constraints June 7, 2019 9 / 23

Algorithm for Precedence Constraints

List Scheduling

List Scheduling (LS):

Every time that a processor i becomes available, schedule on i a job of which
all the predecessors have been completed.

1

2

3

4

5

6

7

time0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1

2

3

4 5

6

7

Giorgio Lucarelli Multiprocessor Speed Scaling with Precedence Constraints June 7, 2019 9 / 23

Algorithm for Precedence Constraints

List Scheduling

List Scheduling (LS):

Every time that a processor i becomes available, schedule on i a job of which
all the predecessors have been completed.

1

2

3

4

5

6

7

time0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1

2

3

4 5

6

7

Giorgio Lucarelli Multiprocessor Speed Scaling with Precedence Constraints June 7, 2019 9 / 23

Algorithm for Precedence Constraints

List Scheduling

Theorem (graham, 1966)

LS is (2− 1
m)-approximate for PREC.

Lower bounds on the makespan of the optimal schedule:

Copt ≥ 1
m

∑
j∈J pj

Copt ≥
∑

j∈T pj for each path T of the graph G .

LS returns a schedule with makespan

Calg ≤
(

2− 1

m

)
max

 1

m

∑
j∈J

pj ,max
T

∑
j∈T

pj

Giorgio Lucarelli Multiprocessor Speed Scaling with Precedence Constraints June 7, 2019 10 / 23

Algorithm for Precedence Constraints

Relation between Energy and Processing Times

Consequences of the convexity of the power function P(s).

In an optimal solution, each job j runs with constant speed sj .

Processing time of job j :

xj =
wj

sj

Energy consumption for the execution of job j :

Ej = xj · sαj =
wα
j

xα−1j

The energy can be expressed as a convex function E (~x) of the vector ~x of the
processing times of the jobs.

Giorgio Lucarelli Multiprocessor Speed Scaling with Precedence Constraints June 7, 2019 11 / 23

Algorithm for Precedence Constraints

Convex Programming Relaxation

Variables:

y : makespan

xj : processing time of job j

min y

y ≥ 1

m

∑
j∈J

xj

y ≥
∑
j∈T

xj for every path T of G

∑
j∈J

wα
j

xα−1j

≤ E

xj ≥ 0

Remark:

The convex program has an exponential number of constraints.

Giorgio Lucarelli Multiprocessor Speed Scaling with Precedence Constraints June 7, 2019 12 / 23

Algorithm for Precedence Constraints

Convex Programming Relaxation

Variables:

y : makespan

xj : processing time of job j

min y

y ≥ 1

m

∑
j∈J

xj

y ≥
∑
j∈T

xj for every path T of G

∑
j∈J

wα
j

xα−1j

≤ E

xj ≥ 0

Remark:

The convex program has an exponential number of constraints.

Giorgio Lucarelli Multiprocessor Speed Scaling with Precedence Constraints June 7, 2019 12 / 23

Algorithm for Precedence Constraints

Approximation Algorithm

Algorithm:

Compute an optimal solution ~xcp of the convex program.

Schedule the jobs by using List Scheduling and the processing times xcp.

Theorem

The above algorithm is (2− 1
m)-approximate for PRECS .

~xcp: processing times obtained by solving the convex program.

~xopt : processing times of an optimal schedule.

CP(~x): value of the convex program w.r.t. the processing times ~x .

Calg ≤
(

2− 1

m

)
· CP(~xcp) ≤

(
2− 1

m

)
· CP(~xopt) ≤

(
2− 1

m

)
· Copt

Giorgio Lucarelli Multiprocessor Speed Scaling with Precedence Constraints June 7, 2019 13 / 23

Algorithm for Precedence Constraints

Approximation Algorithm

Algorithm:

Compute an optimal solution ~xcp of the convex program.

Schedule the jobs by using List Scheduling and the processing times xcp.

Theorem

The above algorithm is (2− 1
m)-approximate for PRECS .

~xcp: processing times obtained by solving the convex program.

~xopt : processing times of an optimal schedule.

CP(~x): value of the convex program w.r.t. the processing times ~x .

Calg ≤
(

2− 1

m

)
· CP(~xcp) ≤

(
2− 1

m

)
· CP(~xopt) ≤

(
2− 1

m

)
· Copt

Giorgio Lucarelli Multiprocessor Speed Scaling with Precedence Constraints June 7, 2019 13 / 23

Algorithm for Precedence Constraints

A Convex Relaxation of Polynomial Size

The convex program has an exponential number of constraints:

y ≥
∑
j∈T

xj for every path T of G

We obtain an equivalent LP of polynomial size as follows:

We introduce a variable yj indicating the completion time of job j .

We replace the above constraints with the following:

yj ≤ y j ∈ J

xj ≤ yj j ∈ J

yj + xj′ ≤ yj′ (j , j ′) ∈ E

yj ≥ 0 j ∈ J

So, we can solve the convex relaxation in polynomial time by applying the
Ellipsoid algorithm to the new equivalent convex program.

Giorgio Lucarelli Multiprocessor Speed Scaling with Precedence Constraints June 7, 2019 14 / 23

General Framework

Outline

1 Introduction

2 Algorithm for Precedence Constraints

3 General Framework

4 Application: Open Shop

5 Conclusion

Giorgio Lucarelli Multiprocessor Speed Scaling with Precedence Constraints June 7, 2019 15 / 23

General Framework

Goal

Consider the following generic problems:

Π: a classical makespan minimization problem

ΠS : the speed scaling variant with a budget of energy

Assumption:
The energy consumption can be expressed as a convex function E (~x) of the vector
of the processing times ~x of the jobs.

Is it possible to obtain a ρ-approximation algorithm for ΠS by using a known
ρ-algorithm A for Π as a black box?

Under some conditions, yes.

Giorgio Lucarelli Multiprocessor Speed Scaling with Precedence Constraints June 7, 2019 16 / 23

General Framework

Conditions

A set of ` linear bounds on Π’s optimal solution of the form

Copt ≥ fk(~p) k = 1, 2, . . . , `

Copt : value of the optimal solution for Π,
~p: the vector of processing times of the jobs,
fk(~p): a linear function of ~p.

The ρ-approximation algorithm A always produces a solution for Π s.t.

Calg ≤ ρ ·
`

max
k=1
{fk(~p)}

Calg : value of the A’s solution for Π.

Giorgio Lucarelli Multiprocessor Speed Scaling with Precedence Constraints June 7, 2019 17 / 23

General Framework

Meta-Theorem

Theorem
The previous conditions imply a ρ-approximation algorithm for ΠS .

Algorithm:
1. Compute an optimal solution ~xcp of the following convex program:

min y

y ≥ fk(~x) k = 1, 2, . . . , `

E (~x) ≤ E

~x ≥ 0

2. Schedule the jobs by using algorithm A and the processing times ~xcp.

Giorgio Lucarelli Multiprocessor Speed Scaling with Precedence Constraints June 7, 2019 18 / 23

Application: Open Shop

Outline

1 Introduction

2 Algorithm for Precedence Constraints

3 General Framework

4 Application: Open Shop

5 Conclusion

Giorgio Lucarelli Multiprocessor Speed Scaling with Precedence Constraints June 7, 2019 19 / 23

Application: Open Shop

Problem Definition

Instance:
A set of n jobs J and a set of m processors P.

Each job j consists of m operations O1,j ,O2,j , . . . ,Om,j .

Operation Oi,j has an amount of work wi,j and it must be executed
entirely by the processor i .

Two operations of the same job cannot be executed at the same time.

A budget of energy E .

i

i ′ Oi ′,j

Oi,j i

i ′ Oi ′,j

Oi,j

Objective:

Find a non-preemptive schedule of minimum makespan, without
exceeding the energy budget.

Giorgio Lucarelli Multiprocessor Speed Scaling with Precedence Constraints June 7, 2019 20 / 23

Application: Open Shop

Application of the Framework

Energy consumption: a convex function of the processing times of the operations.

Lower Bounds for problem SHOP without energy:

Copt ≥
∑

j∈J pi,j for all i ∈ P.

Copt ≥
∑

i∈P pi,j for all j ∈ J.

List Scheduling (LS):
Whenever a processor i ∈ P becomes available, schedule on i an operation Oi,j of
a job j ∈ J which is not processed by any other processor at the same time.

[racsmány]:
LS produces a schedule for SHOP with makespan

Calg ≤ 2 ·max

max
i∈P

∑
j∈J

pi,j

 ,max
j∈J

{∑
i∈P

pi,j

}
Therefore, there exists a 2-approximation algorithm for SHOPS .

Giorgio Lucarelli Multiprocessor Speed Scaling with Precedence Constraints June 7, 2019 21 / 23

Application: Open Shop

Application of the Framework

Energy consumption: a convex function of the processing times of the operations.

Lower Bounds for problem SHOP without energy:

Copt ≥
∑

j∈J pi,j for all i ∈ P.

Copt ≥
∑

i∈P pi,j for all j ∈ J.

List Scheduling (LS):
Whenever a processor i ∈ P becomes available, schedule on i an operation Oi,j of
a job j ∈ J which is not processed by any other processor at the same time.

[racsmány]:
LS produces a schedule for SHOP with makespan

Calg ≤ 2 ·max

max
i∈P

∑
j∈J

pi,j

 ,max
j∈J

{∑
i∈P

pi,j

}
Therefore, there exists a 2-approximation algorithm for SHOPS .

Giorgio Lucarelli Multiprocessor Speed Scaling with Precedence Constraints June 7, 2019 21 / 23

Application: Open Shop

Application of the Framework

Energy consumption: a convex function of the processing times of the operations.

Lower Bounds for problem SHOP without energy:

Copt ≥
∑

j∈J pi,j for all i ∈ P.

Copt ≥
∑

i∈P pi,j for all j ∈ J.

List Scheduling (LS):
Whenever a processor i ∈ P becomes available, schedule on i an operation Oi,j of
a job j ∈ J which is not processed by any other processor at the same time.

[racsmány]:
LS produces a schedule for SHOP with makespan

Calg ≤ 2 ·max

max
i∈P

∑
j∈J

pi,j

 ,max
j∈J

{∑
i∈P

pi,j

}

Therefore, there exists a 2-approximation algorithm for SHOPS .

Giorgio Lucarelli Multiprocessor Speed Scaling with Precedence Constraints June 7, 2019 21 / 23

Application: Open Shop

Application of the Framework

Energy consumption: a convex function of the processing times of the operations.

Lower Bounds for problem SHOP without energy:

Copt ≥
∑

j∈J pi,j for all i ∈ P.

Copt ≥
∑

i∈P pi,j for all j ∈ J.

List Scheduling (LS):
Whenever a processor i ∈ P becomes available, schedule on i an operation Oi,j of
a job j ∈ J which is not processed by any other processor at the same time.

[racsmány]:
LS produces a schedule for SHOP with makespan

Calg ≤ 2 ·max

max
i∈P

∑
j∈J

pi,j

 ,max
j∈J

{∑
i∈P

pi,j

}
Therefore, there exists a 2-approximation algorithm for SHOPS .
Giorgio Lucarelli Multiprocessor Speed Scaling with Precedence Constraints June 7, 2019 21 / 23

Conclusion

Outline

1 Introduction

2 Algorithm for Precedence Constraints

3 General Framework

4 Application: Open Shop

5 Conclusion

Giorgio Lucarelli Multiprocessor Speed Scaling with Precedence Constraints June 7, 2019 22 / 23

Conclusion

Concluding Remarks

Summary:

(2− 1
m)-approximation algorithm for the makespan minimization

multiprocessor speed scaling problem with two steps:

Compute nice processing times for the jobs by solving a convex relaxation.
Apply list scheduling.

A general framework for solving speed scaling problems.

Open questions:

Is it possible to show “equivalence” between speed scaling and classical
scheduling problems?

Check the speed scaling version of the problem 1|pmtn, rj |
∑

Cj .

Giorgio Lucarelli Multiprocessor Speed Scaling with Precedence Constraints June 7, 2019 23 / 23

	Introduction
	Algorithm for Precedence Constraints
	General Framework
	Application: Open Shop
	Conclusion

